On the spectrum of a Hamilton defined on suq(2) and quantum optical models

被引:23
作者
Ballesteros, A
Chumakov, SM
机构
[1] Univ Burgos, Dept Fis, E-09001 Burgos, Spain
[2] Univ Guadalajara, Dept Fis, Guadalajara 44420, Jalisco, Mexico
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 35期
关键词
D O I
10.1088/0305-4470/32/35/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Analytical expressions are given for the eigenvalues and eigenvectors of a Hamiltonian with su(q)(2) dynamical symmetry. The relevance of such an operator in quantum optics is discussed. As an application, the ground-state energy in the Dicke model is studied through su(q)(2) perturbation theory.
引用
收藏
页码:6261 / 6269
页数:9
相关论文
共 18 条
[1]  
Chari V., 1995, A Guide to Quantum Groups
[2]   Dicke model: Quantum nonlinear dynamics and collective phenomena [J].
Chumakov, SM ;
Kozierowski, M .
QUANTUM AND SEMICLASSICAL OPTICS, 1996, 8 (04) :775-803
[3]   GENERAL-PROPERTIES OF QUANTUM OPTICAL-SYSTEMS IN A STRONG-FIELD LIMIT [J].
CHUMAKOV, SM ;
KLIMOV, AB ;
SANCHEZMONDRAGON, JJ .
PHYSICAL REVIEW A, 1994, 49 (06) :4972-4978
[4]   QUANTUM ALGEBRA DEFORMING MAPS, CLEBSCH-GORDAN-COEFFICIENTS, COPRODUCTS, R AND U MATRICES [J].
CURTRIGHT, TL ;
GHANDOUR, GI ;
ZACHOS, CK .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (03) :676-688
[5]  
DRINFELD VG, 1986, QUANTUM GROUPS, P798
[6]   Quantum description of nonlinearly interacting oscillators via classical trajectories [J].
Drobny, G ;
Bandilla, A ;
Jex, I .
PHYSICAL REVIEW A, 1997, 55 (01) :78-93
[7]  
Gomez C., 1996, QUANTUM GROUPS 2 DIM
[8]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69
[9]  
Karassiov V. P., 1992, Journal of Soviet Laser Research, V13, P188, DOI 10.1007/BF01121107
[10]   sl(2) variational schemes for solving one class of nonlinear quantum models [J].
Karassiov, VP .
PHYSICS LETTERS A, 1998, 238 (01) :19-28