Global versus local asymptotic theories of finite-dimensional normed spaces

被引:43
作者
Milman, VD [1 ]
Schechtman, G [1 ]
机构
[1] WEIZMANN INST SCI, DEPT THEORET MATH, IL-76100 REHOVOT, ISRAEL
关键词
D O I
10.1215/S0012-7094-97-09003-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:73 / 93
页数:21
相关论文
共 18 条
[1]   THE PLANK PROBLEM FOR SYMMETRICAL BODIES [J].
BALL, K .
INVENTIONES MATHEMATICAE, 1991, 104 (03) :535-543
[2]   A SOLUTION OF THE PLANK PROBLEM [J].
BANG, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :990-993
[3]   NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN [J].
BOURGAIN, J ;
MILMAN, VD .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :319-340
[4]  
BOURGAIN J, 1985, CR ACAD SCI I-MATH, V300, P435
[5]  
BOURGAIN J, 1988, LECT NOTES MATH, V1317, P44
[6]   DIMENSION OF ALMOST SPHERICAL SECTIONS OF CONVEX BODIES [J].
FIGIEL, T ;
LINDENSTRAUSS, J ;
MILMAN, VD .
ACTA MATHEMATICA, 1977, 139 (1-2) :53-94
[7]   SOME INEQUALITIES FOR GAUSSIAN-PROCESSES AND APPLICATIONS [J].
GORDON, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1985, 50 (04) :265-289
[8]  
KASIN BS, 1977, UPSEKHI MAT NAUK, V32, P191
[9]  
MILMAN V, 1991, LECT NOTES MATH, V1469, P13
[10]  
Milman V., 1990, ISAREL MATH C P, V3, P151