Old proteins, developing roles - The regulation of calcium channels by synaptic proteins

被引:16
作者
Davies, Jonathan N. [1 ]
Zamponi, Gerald W. [1 ]
机构
[1] Univ Calgary, Dept Physiol & Biophys, Hotchkiss Brain Inst, Calgary, AB T2N 4N1, Canada
基金
加拿大健康研究院;
关键词
calcium channel; syntaxin; SNARE; neurotransmission; synapse; alternative splicing;
D O I
10.4161/chan.2.2.6214
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Coupling of presynaptic voltage-gated calcium channels to the synaptic release machinery is critical for neurotransmission. It was traditionally believed that anchoring calcium channels close to the calcium microdomain dependent release machinery was the main reason for the physical interactions between channels and synaptic proteins, however in recent years, it is becoming clear that these proteins additionally regulate channel activity, and such processes as channel targeting and alternative splicing, to orchestrate a much broader regulatory role in controlling calcium channel function, calcium influx and hence neurotransmission. Calcium signalling serves a multitude of cellular functions and therefore requires tight regulation. Specific, often calcium-dependent interactions between synaptic proteins and calcium channels appear to play a significant role in fine-tuning of the synaptic response over development. While it is clear that investigation of a few of the multitude of synaptic proteins will not provide a complete understanding of calcium channel regulation, consideration of the emerging mechanisms by which synaptic protein interactions might regulate calcium channel function is important in order to understand their possible contributions to synaptic transmission. Here, we review the current state of knowledge of the molecular mechanisms by which synaptic proteins regulate presynaptic calcium channel activity.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 151 条
[1]   Genetic and molecular analysis of the synaptotagmin family [J].
Adolfsen, B ;
Littleton, JT .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2001, 58 (03) :393-402
[2]   Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism [J].
Atlas, D .
JOURNAL OF NEUROCHEMISTRY, 2001, 77 (04) :972-985
[3]   Diversification of synaptic strength: Presynaptic elements [J].
Atwood, HL ;
Karunanithi, S .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (07) :497-516
[4]  
Bahls FH, 1998, J NEUROBIOL, V35, P198, DOI 10.1002/(SICI)1097-4695(199805)35:2<198::AID-NEU6>3.0.CO
[5]  
2-#
[6]   Fusion pore dynamics are regulated by synaptotagmin•t-SNARE interactions [J].
Bai, JH ;
Wang, CT ;
Richards, DA ;
Jackson, MB ;
Chapman, ER .
NEURON, 2004, 41 (06) :929-942
[7]   DIFFERENTIAL EXPRESSION OF SNAP-25 PROTEIN ISOFORMS DURING DIVERGENT VESICLE FUSION EVENTS OF NEURAL DEVELOPMENT [J].
BARK, IC ;
HAHN, KM ;
RYABININ, AE ;
WILSON, MC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (05) :1510-1514
[8]   Cell-specific alternative splicing increases calcium channel current density in the pain pathway [J].
Bell, TJ ;
Thaler, C ;
Castiglioni, AJ ;
Helton, TD ;
Lipscombe, D .
NEURON, 2004, 41 (01) :127-138
[9]   SYNTAXIN - A SYNAPTIC PROTEIN IMPLICATED IN DOCKING OF SYNAPTIC VESICLES AT PRESYNAPTIC ACTIVE ZONES [J].
BENNETT, MK ;
CALAKOS, N ;
SCHELLER, RH .
SCIENCE, 1992, 257 (5067) :255-259
[10]   Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1 [J].
Bergsman, JB ;
Tsien, RW .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4368-4378