Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils

被引:214
作者
Priemé, A
Braker, G
Tiedje, JM
机构
[1] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA
关键词
D O I
10.1128/AEM.68.4.1893-1900.2002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.
引用
收藏
页码:1893 / 1900
页数:8
相关论文
共 34 条
[1]   EFFECT OF SOIL PROPERTIES ON THE QUANTITY AND QUALITY OF DENITRIFICATION WITH DIFFERENT BACTERIA [J].
ABOUSEADA, MNI ;
OTTOW, JCG .
ZEITSCHRIFT FUR PFLANZENERNAHRUNG UND BODENKUNDE, 1988, 151 (02) :109-115
[2]   THE STRUCTURE OF COPPER-NITRITE REDUCTASE FROM ACHROMOBACTER CYCLOCLASTES AT 5 PH VALUES, WITH NO2- BOUND AND WITH TYPE-II COPPER DEPLETED [J].
ADMAN, ET ;
GODDEN, JW ;
TURLEY, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27458-27474
[3]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[4]  
Aulakh M. S., 1992, Advances in Soil Science, Volume 18., P2
[5]  
AUSTIN FR, 1979, SOIL SURVEY KALAMAZO
[6]   Cytochrome cd(1) structure: Unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds [J].
Baker, SC ;
Saunders, NFW ;
Willis, AC ;
Ferguson, SJ ;
Hajdu, J ;
Fulop, V .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 269 (03) :440-455
[7]   Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities [J].
Braker, G ;
Zhou, JZ ;
Wu, LY ;
Devol, AH ;
Tiedje, JM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (05) :2096-2104
[8]  
Braker G, 1998, APPL ENVIRON MICROB, V64, P3769
[9]   Dissimilatory nitrite reductase genes from autotrophic ammonia-oxidizing bacteria [J].
Casciotti, KL ;
Ward, BB .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (05) :2213-2221
[10]  
Cavigelli MA, 2000, ECOLOGY, V81, P1402