SnIPRE: Selection Inference Using a Poisson Random Effects Model

被引:65
作者
Eilertson, Kirsten E. [1 ]
Booth, James G. [2 ]
Bustamante, Carlos D. [3 ]
机构
[1] J David Gladstone Inst, Bioinformat Core, San Francisco, CA USA
[2] Cornell Univ, Dept Biol Stat & Computat Biol, Ithaca, NY USA
[3] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
ADAPTIVE PROTEIN EVOLUTION; POPULATION-GENETICS; NATURAL-SELECTION; POLYMORPHISM; DNA; DIVERGENCE; WINBUGS;
D O I
10.1371/journal.pcbi.1002806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present an approach for identifying genes under natural selection using polymorphism and divergence data from synonymous and non-synonymous sites within genes. A generalized linear mixed model is used to model the genome-wide variability among categories of mutations and estimate its functional consequence. We demonstrate how the model's estimated fixed and random effects can be used to identify genes under selection. The parameter estimates from our generalized linear model can be transformed to yield population genetic parameter estimates for quantities including the average selection coefficient for new mutations at a locus, the synonymous and non-synynomous mutation rates, and species divergence times. Furthermore, our approach incorporates stochastic variation due to the evolutionary process and can be fit using standard statistical software. The model is fit in both the empirical Bayes and Bayesian settings using the lme4 package in R, and Markov chain Monte Carlo methods in WinBUGS. Using simulated data we compare our method to existing approaches for detecting genes under selection: the McDonald-Kreitman test, and two versions of the Poisson random field based method MKprf. Overall, we find our method universally outperforms existing methods for detecting genes subject to selection using polymorphism and divergence data.
引用
收藏
页数:14
相关论文
共 33 条
[1]   Adaptive evolution of non-coding DNA in Drosophila [J].
Andolfatto, P .
NATURE, 2005, 437 (7062) :1149-1152
[2]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[3]  
[Anonymous], 1985, NEW SCI
[4]  
Barrier M, 2003, GENETICS, V163, P723
[5]  
Bates D., 2011, R PACKAGE VERSION 09
[6]   Population genomics:: Whole-genome analysis of polymorphism and divergence in Drosophila simulans [J].
Begun, David J. ;
Holloway, Alisha K. ;
Stevens, Kristian ;
Hillier, LaDeana W. ;
Poh, Yu-Ping ;
Hahn, Matthew W. ;
Nista, Phillip M. ;
Jones, Corbin D. ;
Kern, Andrew D. ;
Dewey, Colin N. ;
Pachter, Lior ;
Myers, Eugene ;
Langley, Charles H. .
PLOS BIOLOGY, 2007, 5 (11) :2534-2559
[7]   A distal enhancer and an ultraconserved exon are derived from a novel retroposon [J].
Bejerano, G ;
Lowe, CB ;
Ahituv, N ;
King, B ;
Siepel, A ;
Salama, SR ;
Rubin, EM ;
Kent, WJ ;
Haussler, D .
NATURE, 2006, 441 (7089) :87-90
[8]   The genomic rate of adaptive amino acid substitution in Drosophila [J].
Bierne, N ;
Eyre-Walker, A .
MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (07) :1350-1360
[9]   Assessing the evolutionary impact of amino acid mutations in the human genome [J].
Boyko, Adam R. ;
Williamson, Scott H. ;
Indap, Amit R. ;
Degenhardt, Jeremiah D. ;
Hernandez, Ryan D. ;
Lohmueller, Kirk E. ;
Adams, Mark D. ;
Schmidt, Steffen ;
Sninsky, John J. ;
Sunyaev, Shamil R. ;
White, Thomas J. ;
Nielsen, Rasmus ;
Clark, Andrew G. ;
Bustamante, Carlos D. .
PLOS GENETICS, 2008, 4 (05)
[10]   Natural selection on protein-coding genes in the human genome [J].
Bustamante, CD ;
Fledel-Alon, A ;
Williamson, S ;
Nielsen, R ;
Hubisz, MT ;
Glanowski, S ;
Tanenbaum, DM ;
White, TJ ;
Sninsky, JJ ;
Hernandez, RD ;
Civello, D ;
Adams, MD ;
Cargill, M ;
Clark, AG .
NATURE, 2005, 437 (7062) :1153-1157