Magnetic and critical properties of alternating spin chain with S=1/2, 1 in magnetic fields

被引:26
作者
Fujii, M
Fujimoto, S
Kawakami, N
机构
[1] KYOTO UNIV, DEPT PHYS, KYOTO 606, JAPAN
[2] OSAKA UNIV, DEPT MAT & LIFE SCI, SUITA, OSAKA 565, JAPAN
关键词
alternating spin chain; exact solution; conformal field theory;
D O I
10.1143/JPSJ.65.2381
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an integrable spin chain with an alternating array of spins S = 1/2, 1 in external magnetic fields using the Bethe ansatz, exact solution. The calculated magnetization curve has a cusp at a critical magnetic field H = H-C, at which the specific heat shows a divergence property. We also calculate finite-size corrections to the energy spectrum, and obtain the critical exponents of correlation functions using conformal field theory (CFT). Low-energy properties of the model are described by two c = 1 U(1) CFTs at H < H-C and one c = 1 U(1) CFT at H > H-C.
引用
收藏
页码:2381 / 2384
页数:4
相关论文
共 19 条
[1]  
ADAMS SR, 1993, J PHYS A, V26, pL529
[2]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[3]  
BROTE HW, 1986, PHYS REV LETT, V56, P742
[4]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204
[5]   NEW INTEGRABLE QUANTUM CHAINS COMBINING DIFFERENT KINDS OF SPINS [J].
DEVEGA, HJ ;
WOYNAROVICH, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (17) :4499-4516
[6]   THERMODYNAMICS OF INTEGRABLE CHAINS WITH ALTERNATING SPINS [J].
DEVEGA, HJ ;
MEZINCESCU, L ;
NEPOMECHIE, RI .
PHYSICAL REVIEW B, 1994, 49 (18) :13223-13226
[7]   SCALAR KINKS [J].
DEVEGA, HJ ;
MEZINCESCU, L ;
NEOPMECHIE, RI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (25-26) :3473-3485
[8]   METHOD FOR CALCULATING FINITE SIZE CORRECTIONS IN BETHE ANSATZ SYSTEMS - HEISENBERG CHAIN AND 6-VERTEX MODEL [J].
DEVEGA, HJ ;
WOYNAROVICH, F .
NUCLEAR PHYSICS B, 1985, 251 (03) :439-456
[9]   CRITICAL EXPONENTS FOR THE ONE-DIMENSIONAL HUBBARD-MODEL [J].
FRAHM, H ;
KOREPIN, VE .
PHYSICAL REVIEW B, 1990, 42 (16) :10553-10565
[10]   HEISENBERG-MODEL AND SUPERSYMMETRIC T-J MODEL WITH 2-BAND STRUCTURE IN ONE-DIMENSION [J].
ITAKURA, T ;
KAWAKAMI, N .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (07) :2321-2324