THERMODYNAMIC FORMALISM AND SELBERG'S ZETA FUNCTION FOR MODULAR GROUPS

被引:11
作者
Chang, C. -H. [1 ]
Mayer, D. [1 ]
机构
[1] Tech Univ Clausthal, D-38678 Clausthal Zellerfeld, Germany
关键词
D O I
10.1070/RD2000v005n03ABEH000150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of the thermodynamic formalism for dynamical systems [26] Selberg's zeta function [29] for the modular group PSL(2, Z) can be expressed through the Fredholm determinant of the generalized Ruelle transfer operator for the dynamical system defined by the geodesic flow on the modular surface corresponding to the group PSL(2, Z) [19]. In the present paper we generalize this result to modular subgroups Gamma with finite index of PSL(2, Z). The corresponding surfaces of constant negative curvature with finite hyperbolic volume are in general ramified covering surfaces of the modular surface for PSL(2, Z). Selberg's zeta function for these modular subgroups can be expressed via the generalized transfer operators for PSL(2, Z) belonging to the representation of PSL(2, Z) induced by the trivial representation of the subgroup Gamma. The decomposition of this induced representation into its irreducible components leads to a decomposition of the transfer operator for these modular groups in analogy to a well known factorization formula of Venkov and Zograf for Selberg's zeta function for modular subgroups [34].
引用
收藏
页码:281 / 312
页数:32
相关论文
共 34 条
[1]  
Artin E., 1924, ABHANDL MATH SEM HAM, V3, P170, DOI [DOI 10.1007/BF02954622, 10.1007/BF02954622]
[2]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[3]  
BOWEN R, 1975, L N MATH, V470
[4]  
Einstein A, 1917, VERHAND DEUT PHYS GE, V19, P82
[5]  
FRIED D, 1986, ANN SCI ECOLE NORM S, V19, P491
[6]  
GROTHENDIECK A., 1955, MEM AM MATH SOC, V16
[7]  
Grothendieck A., 1956, B SOC MATH FR, V84, P319, DOI DOI 10.24033/BSMF.1476
[8]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[9]  
Hejhal D., 1999, EMERGING APPL NUMBER, P72
[10]   SELBERG TRACE FORMULA AND RIEMANN ZETA-FUNCTION [J].
HEJHAL, DA .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (03) :441-482