An important feature of Alzheimer's disease (AD) is the cerebral deposition of amyloid. The main component of the amyloid is a 39-44-amino acid residue protein called amyloid beta (A beta), which also exists as a normal protein in biological fluids, known as soluble A beta. A major risk factor for late-onset AD is the inheritance of the apolipoprotein (ape) E4 isotype of apoE. How apoE is involved in the pathogenesis of AD is unclear; however, evidence exists for a direct apoE/A beta interaction. We and others have shown that apoE copurifies with A beta from AD amyloid plaques and that under certain in vitro conditions apoE promotes a beta-sheet structure in A beta peptides. Currently we document the high affinity binding of A beta peptides to both human recombinant apoE3 and -E4 with a K-D of 20 nM. This interaction is greatly influenced by the conformational state of the A beta peptide used. Furthermore, we show that the fibril modulating effect of apoE is also influenced by the initial secondary structure of the A beta peptide. The preferential binding of apoE to A beta peptides with a beta-sheet conformation can in part explain the copurification of A beta and apoE from AD amyloid plaques.