Pauli operator and Aharonov-Casher theorem for measure valued magnetic fields

被引:32
作者
Erdos, L [1 ]
Vougalter, V
机构
[1] Georgia Tech, Sch Math, Atlanta, GA 30332 USA
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
美国国家科学基金会;
关键词
D O I
10.1007/s002200100585
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the two dimensional Pauli operator and identify its core for magnetic fields that are regular Borel measures. The magnetic field is generated by a scalar potential hence we bypass the usual A is an element of L-loc(2) condition on the vector potential, which does not allow to consider such singular fields. We extend the Aharonov-Casher theorem for magnetic fields that are measures with finite total variation and we present a counterexample in case of infinite total variation. One of the key technical tools is a weighted L-2 estimate on a singular integral operator.
引用
收藏
页码:399 / 421
页数:23
相关论文
共 12 条
[1]   GROUND-STATE OF A SPIN-1-2 CHARGED-PARTICLE IN A 2-DIMENSIONAL MAGNETIC-FIELD [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW A, 1979, 19 (06) :2461-2462
[2]  
[Anonymous], HARMONIC ANAL
[3]  
CYCON H. L, 1987, Schrodinger operators with application to quantum mechanics and global geometry
[4]  
DeFrancia J.L.R., 1985, WEIGHTED NORM INEQUA
[5]   The kernel of dirac operators on S3 and R3 [J].
Erdós, L ;
Solovej, JP .
REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (10) :1247-1280
[6]  
KILPELAINEN T, 1994, ANN ACAD SCI FENN-M, V19, P95
[7]   SCHRODINGER-OPERATORS WITH SINGULAR MAGNETIC VECTOR POTENTIALS [J].
LEINFELDER, H ;
SIMADER, CG .
MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (01) :1-19
[8]  
LEINFELDER H, 1983, J OPERAT THEOR, V9, P163
[9]  
Lieb E., 1997, ANALYSIS
[10]  
MILLER KC, 1982, THESIS PRINCETON U