Fast DNA sequencing via transverse electronic transport

被引:340
作者
Lagerqvist, J
Zwolak, M
Di Ventra, M [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
关键词
D O I
10.1021/nl0601076
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A rapid and low-cost method to sequence DNA would usher in a revolution in medicine. We propose and theoretically show the feasibility of a protocol for sequencing based on the distributions of transverse electrical currents of single-stranded DNA while it translocates through a nanopore. Our estimates, based on the statistics of these distributions, reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours without parallelization, that is, orders of magnitude faster than present techniques. The practical implementation of our approach would represent a substantial advancement in our ability to study, predict, and cure diseases from the perspective of the genetic makeup of each individual.
引用
收藏
页码:779 / 782
页数:4
相关论文
共 41 条
[1]   Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules [J].
Akeson, M ;
Branton, D ;
Kasianowicz, JJ ;
Brandin, E ;
Deamer, DW .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :3227-3233
[2]   Microscopic kinetics of DNA translocation through synthetic nanopores [J].
Aksimentiev, A ;
Heng, JB ;
Timp, G ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :2086-2097
[3]   Sequence information can be obtained from single DNA molecules [J].
Braslavsky, I ;
Hebert, B ;
Kartalov, E ;
Quake, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3960-3964
[4]   Advances in sequencing technology [J].
Chan, EY .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2005, 573 (1-2) :13-40
[5]   Probing single DNA molecule transport using fabricated nanopores [J].
Chen, P ;
Gu, JJ ;
Brandin, E ;
Kim, YR ;
Wang, Q ;
Branton, D .
NANO LETTERS, 2004, 4 (11) :2293-2298
[6]   Effect of electron-phonon scattering on shot noise in nanoscale junctions [J].
Chen, YC ;
Di Ventra, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (16)
[7]   A vision for the future of genomics research [J].
Collins, FS ;
Green, ED ;
Guttmacher, AE ;
Guyer, MS .
NATURE, 2003, 422 (6934) :835-847
[8]   Nanopores and nucleic acids: prospects for ultrarapid sequencing [J].
Deamer, DW ;
Akeson, M .
TRENDS IN BIOTECHNOLOGY, 2000, 18 (04) :147-151
[9]   Characterization of nucleic acids by nanopore analysis [J].
Deamer, DW ;
Branton, D .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (10) :817-825
[10]   Colloquium:: The quest for high-conductance DNA [J].
Endres, RG ;
Cox, DL ;
Singh, RRP .
REVIEWS OF MODERN PHYSICS, 2004, 76 (01) :195-214