Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI

被引:337
作者
Magnin, Benoit [1 ,2 ,3 ,4 ]
Mesrob, Lilia [2 ,3 ,4 ]
Kinkingnehun, Serge [2 ,3 ,4 ,5 ]
Pelegrini-Issac, Melanie [1 ,3 ,4 ]
Colliot, Olivier [4 ,6 ]
Sarazin, Marie [2 ,3 ,4 ,7 ]
Dubois, Bruno [2 ,3 ,4 ,7 ]
Lehericy, Stephane [2 ,3 ,4 ,8 ,9 ]
Benali, Habib [1 ,3 ,4 ,10 ]
机构
[1] INSERM, UMR S 678, F-75013 Paris, France
[2] INSERM, UMR S 610, F-75013 Paris, France
[3] Univ Paris 06, UMPC, Fac Med Pitie Salpetriere, F-75013 Paris, France
[4] IFR 49, F-91191 Gif Sur Yvette, France
[5] Eye BRAIN, F-94400 Vitry Sur Seine, France
[6] CNRS, UPR LENA 640, F-75013 Paris, France
[7] Hop La Pitie Salpetriere, Dept Neurol, F-75013 Paris, France
[8] Univ Paris 06, UMPC, Ctr NeuroImaging Res CENIR, F-75013 Paris, France
[9] Hop La Pitie Salpetriere, Dept Neuroradiol, F-75013 Paris, France
[10] Univ Montreal, UNF CRIUGM, Montreal, PQ H3W 1W5, Canada
关键词
Alzheimer's disease; Diagnosis; Magnetic resonance image; Support vector machine; Sensitivity; Specificity; MILD COGNITIVE IMPAIRMENT; DIMENSIONAL PATTERN-CLASSIFICATION; ENTORHINAL CORTEX; LEWY BODIES; CEREBRAL ATROPHY; EARLY-DIAGNOSIS; DEMENTIA; HIPPOCAMPAL; AD; PERFORMANCE;
D O I
10.1007/s00234-008-0463-x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer's disease (AD) and elderly control subjects. We studied 16 patients with AD [mean age +/- standard deviation (SD) = 74.1 +/- 5.2 years, mini-mental score examination (MMSE) = 23.1 +/- 2.9] and 22 elderly controls (72.3 +/- 5.0 years, MMSE = 28.5 +/- 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results. We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%). Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 59 条
[1]  
[Anonymous], 1994, An introduction to the bootstrap: CRC press
[2]  
Ashburner J, 2000, HUM BRAIN MAPP, V9, P212, DOI 10.1002/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO
[3]  
2-#
[4]  
Ashburner J, 1999, HUM BRAIN MAPP, V7, P254, DOI 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO
[5]  
2-G
[6]  
Ashburner J., 2003, HUMAN BRAIN FUNCTION, P695
[7]   Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects [J].
Ballmaier, M ;
O'Brien, JT ;
Burton, EJ ;
Thompson, PM ;
Rex, DE ;
Narr, KL ;
McKeith, IG ;
DeLuca, H ;
Toga, AW .
NEUROIMAGE, 2004, 23 (01) :325-335
[8]   A comparison of medial and lateral temporal lobe atrophy in dementia with Lewy bodies and Alzheimer's disease: Magnetic resonance imaging volumetric study [J].
Barber, R ;
McKeith, IG ;
Ballard, C ;
Gholkar, A ;
O'Brien, JT .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2001, 12 (03) :198-205
[9]  
Benton A., 1974, The revised visual retention test
[10]   DIFFERENTIAL BEHAVIORAL EFFECTS IN FRONTAL LOBE DISEASE [J].
BENTON, AL .
NEUROPSYCHOLOGIA, 1968, 6 (01) :53-&