DNA methylation and epigenetic inheritance during plant gametogenesis

被引:63
作者
Takeda, S [1 ]
Paszkowski, J [1 ]
机构
[1] Univ Geneva, Lab Plant Genet, CH-1211 Geneva 4, Switzerland
关键词
D O I
10.1007/s00412-005-0031-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In plants, newly acquired epigenetic states of transcriptional gene activity are readily transmitted to the progeny. This is in contrast to mammals, where only rare cases of transgenerational inheritance of new epigenetic traits have been reported (FASEB J 12:949-957, 1998; Nat Genet 23:314-318, 1999; Proc Natl Acad Sci U S A 100:2538-2543, 2003). Epigenetic inheritance in plants seems to rely on cytosine methylation maintained through meiosis and postmeiotic mitoses, giving rise to gametophytes. In particular, maintenance of CpG methylation ((m)CpG) appears to play a central role, guiding the distribution of other epigenetic signals such as histone H3 methylation and non-CpG DNA methylation. The evolutionarily conserved DNA methyltransferase MET1 is responsible for copying (m)CpG patterns through DNA replication in the gametophytic phase. The importance of gametophytic MET1 activity is illustrated by the phenotypes of met1 mutants that are severely compromised in the accuracy of epigenetic inheritance during gametogenesis. This includes elimination of imprinting at paternally silent loci such as FWA or MEDEA (MEA). The importance of DNA methylation in gametophytic imprinting has been reinforced by the discovery of DEMETER (DME), encoding putative DNA glycosylase involved in the removal of C-m. DME opposes transcriptional silencing associated with imprinting activities of the MEA/FIE polycomb group complex.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 76 条
[1]   Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene [J].
Bartee, L ;
Malagnac, F ;
Bender, J .
GENES & DEVELOPMENT, 2001, 15 (14) :1753-1758
[2]  
Birve A, 2001, DEVELOPMENT, V128, P3371
[3]   Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors [J].
Brzeski, J ;
Jerzmanowski, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (02) :823-828
[4]   Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing [J].
Cao, XF ;
Jacobsen, SE .
CURRENT BIOLOGY, 2002, 12 (13) :1138-1144
[5]   Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes [J].
Cao, XF ;
Jacobsen, SE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 :16491-16498
[6]   Role of the DRM and CMT3 Methyltransferases in RNA-directed DNA methylation [J].
Cao, XF ;
Aufsatz, W ;
Zilberman, D ;
Mette, MF ;
Huang, MS ;
Matzke, M ;
Jacobsen, SE .
CURRENT BIOLOGY, 2003, 13 (24) :2212-2217
[7]   RNA silencing genes control de novo DNA methylation [J].
Chan, SWL ;
Zilberman, D ;
Xie, ZX ;
Johansen, LK ;
Carrington, JC ;
Jacobsen, SE .
SCIENCE, 2004, 303 (5662) :1336-1336
[8]   Fertilization-independent seed development in Arabidopsis thaliana [J].
Chaudhury, AM ;
Ming, L ;
Miller, C ;
Craig, S ;
Dennis, ES ;
Peacock, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4223-4228
[9]   An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene [J].
Choi, Y ;
Harada, JJ ;
Goldberg, RB ;
Fischer, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (19) :7481-7486
[10]   DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis [J].
Choi, YH ;
Gehring, M ;
Johnson, L ;
Hannon, M ;
Harada, JJ ;
Goldberg, RB ;
Jacobsen, SE ;
Fischer, RL .
CELL, 2002, 110 (01) :33-42