Insights into the Catalytic Mechanism of Human sEH Phosphatase by Site-Directed Mutagenesis and LC-MS/MS Analysis

被引:19
作者
Cronin, Annette [1 ]
Homburg, Shirli [2 ]
Duerk, Heike [2 ]
Richter, Ingrid [3 ]
Adamskal, Magdalena [1 ]
Frere, Frederic [1 ]
Arand, Michael [1 ]
机构
[1] Univ Zurich, Inst Pharmacol & Toxicol, CH-8057 Zurich, Switzerland
[2] Johannes Gutenberg Univ Mainz, Inst Toxicol, D-55131 Mainz, Germany
[3] Univ Wurzburg, Inst Pharmacol & Toxicol, D-97078 Wurzburg, Germany
基金
瑞士国家科学基金会;
关键词
soluble epoxide hydrolase; lipid phosphatase; haloacid dehalogenase; acyl phosphate; mass spectrometry;
D O I
10.1016/j.jmb.2008.08.049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have recently reported that human soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a novel phosphatase enzymatic activity. Based on a structural relationship with other members of the haloacid dehalogenase superfamily, the sEH N-terminal phosphatase domain revealed four conserved sequence motifs, including the proposed catalytic nucleophile D9, and several other residues potentially implicated in substrate turnover and/or Mg2+ binding. To enlighten the catalytic mechanism of dephosphorylation, we constructed sEH phosphatase active-site mutants by site-directed mutagenesis. A total of 18 mutants were constructed and recombinantly expressed in Escherichia coli as soluble proteins, purified to homogeneity and subsequently analysed for their kinetic parameters. A replacement of residues D9, K160, D184 or N189 resulted in a complete loss of phosphatase activity, consistent with an essential function for catalysis. In contrast, a substitution of 1311, T123, N124 and D185 leads to sEH mutant proteins with altered kinetic properties. We further provide evidence of the formation of an acylphosphate intermediate on D9 by liquid chromatography-tandem mass spectrometry based on the detection of homoserine after NaBH4 reduction of the phosphorylated enzyme, which identifies D9 as the catalytic nucleophile. Surprisingly, we could only show such homoserine formation using the D11N mutant, which strongly suggests D11 to be involved in the acylphosphate hydrolysis. In the D11 mutant, the second catalytic step becomes rate limiting, which then allows trapping of the labile intermediate. Substrate turnover in the presence of (H2O)-H-18 revealed that the nucleophilic attack during the second reaction step occurs at the acylphosphate phosphorous. Based on these findings, we propose a two-step catalytic mechanism of dephosphorylation that involves the phosphate substrate hydrolysis by nucleophilic attack by the catalytic nucleophile D9 followed by hydrolysis of the acylphosphate enzyme intermediate supported by D11. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:627 / 640
页数:14
相关论文
共 56 条
[1]   Phosphoryl group transfer: evolution of a catalytic scaffold [J].
Allen, KN ;
Dunaway-Mariano, D .
TRENDS IN BIOCHEMICAL SCIENCES, 2004, 29 (09) :495-503
[2]   Protein tyrosine phosphatases in the human genome [J].
Alonso, A ;
Sasin, J ;
Bottini, N ;
Friedberg, I ;
Friedberg, I ;
Osterman, A ;
Godzik, A ;
Hunter, T ;
Dixon, J ;
Mustelin, T .
CELL, 2004, 117 (06) :699-711
[3]   Cloning and molecular characterization of a soluble epoxide hydrolase from Aspergillus niger that is related to mammalian microsomal epoxide hydrolase [J].
Arand, M ;
Hemmer, H ;
Dürk, H ;
Baratti, J ;
Archelas, A ;
Furstoss, R ;
Oesch, F .
BIOCHEMICAL JOURNAL, 1999, 344 :273-280
[4]   The telltale structures of epoxide hydrolases [J].
Arand, M ;
Cronin, A ;
Oesch, F ;
Mowbray, SL ;
Jones, TA .
DRUG METABOLISM REVIEWS, 2003, 35 (04) :365-383
[5]   SEQUENCE SIMILARITY OF MAMMALIAN EPOXIDE HYDROLASES TO THE BACTERIAL HALOALKANE DEHALOGENASE AND OTHER RELATED PROTEINS - IMPLICATION FOR THE POTENTIAL CATALYTIC MECHANISM OF ENZYMATIC EPOXIDE HYDROLYSIS [J].
ARAND, M ;
GRANT, DF ;
BEETHAM, JK ;
FRIEDBERG, T ;
OESCH, F ;
HAMMOCK, BD .
FEBS LETTERS, 1994, 338 (03) :251-256
[6]   Detoxification of environmental mutagens and carcinogens: Structure, mechanism, and evolution of liver epoxide hydrolase [J].
Argiriadi, MA ;
Morisseau, C ;
Hammock, BD ;
Christianson, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (19) :10637-10642
[7]   Insights into the mechanism of catalysis by the P-C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis [J].
Baker, AS ;
Ciocci, MJ ;
Metcalf, WW ;
Kim, J ;
Babbitt, PC ;
Wanner, BL ;
Martin, BM ;
Dunaway-Mariano, D .
BIOCHEMISTRY, 1998, 37 (26) :9305-9315
[8]   The structure and mechanism of protein phosphatases: Insights into catalysis and regulation [J].
Barford, D ;
Das, AK ;
Egloff, MP .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1998, 27 :133-164
[9]   GENE EVOLUTION OF EPOXIDE HYDROLASES AND RECOMMENDED NOMENCLATURE [J].
BEETHAM, JK ;
GRANT, D ;
ARAND, M ;
GARBARINO, J ;
KIYOSUE, T ;
PINOT, F ;
OESCH, F ;
BELKNAP, WR ;
SHINOZAKI, K ;
HAMMOCK, BD .
DNA AND CELL BIOLOGY, 1995, 14 (01) :61-71
[10]   Evolutionary genomics of the HAD superfamily: Understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes [J].
Burroughs, A. Maxwell ;
Allen, Karen N. ;
Dunaway-Mariano, Debra ;
Aravind, L. .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 361 (05) :1003-1034