VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury

被引:124
作者
Leonard, Ellen C. [1 ]
Friedrich, Jessica L. [1 ]
Basile, David P. [1 ]
机构
[1] Indiana Univ, Sch Med, Dept Cellular & Integrat Physiol, Indianapolis, IN 46202 USA
关键词
ischemia; interstitial fibrosis; peritubular capillaries; salt sensitivity;
D O I
10.1152/ajprenal.00099.2008
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Acute kidney injury induced by renal ischemia-reperfusion (I/R) compromises microvascular density and predisposes to chronic kidney disease (CKD) and sodium-dependent hypertension. VEGF-121 was administered to rats fed a standard (0.4%) sodium diet at various times following recovery from I/R injury for up to 35 days. VEGF-121 had no effect on the initial loss of renal function, as indicated by serum creatinine levels measured 24 h after injury. Serum creatinine levels declined thereafter, indicative of renal repair. Rats were then switched to an elevated (4.0%) sodium diet for an additional 28 days to induce CKD. The 4.0% sodium diet enhanced renal hypertrophy, interstitial volume, albuminuria, and cardiac hypertrophy relative to postischemic animals maintained on the 0.4% sodium diet. Administration of VEGF-121 from day 0 to 14, day 0 to 35, or day 3 to 35 after I/R suppressed the effects of sodium diet on CKD development, while delayed administration of VEGF-121 from day 21 to 35 had no effect. Endothelial nitric oxide synthase protein levels were upregulated in postischemic animals, and this effect was significantly increased by the 4.0% sodium diet but was not influenced by prior treatment with VEGF. Conversely, microvascular density was preserved in postischemic animals treated with VEGF-121 relative to vehicle-treated postischemic animals. These data suggest that early, but not delayed, treatment with VEGF-121 can preserve vascular structure after ischemia and influence chronic renal function in response to elevated sodium intake.
引用
收藏
页码:F1648 / F1657
页数:10
相关论文
共 32 条
[1]   MOLECULAR EVENTS IN THE ORGANIZATION OF RENAL TUBULAR EPITHELIUM - FROM NEPHROGENESIS TO REGENERATION [J].
BACALLAO, R ;
FINE, LG .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (06) :F913-F924
[2]   The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function [J].
Basile, D. P. .
KIDNEY INTERNATIONAL, 2007, 72 (02) :151-156
[3]   Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor [J].
Basile, David P. ;
Fredrich, Katherine ;
Chelladurai, Bhadrani ;
Leonard, Ellen C. ;
Parrish, Alan R. .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2008, 294 (04) :F928-F936
[4]   Angiostatin and matrix metalloprotease expression following ischemic acute renal failure [J].
Basile, DP ;
Fredrich, K ;
Weihrauch, D ;
Hattan, N ;
Chilian, WM .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2004, 286 (05) :F893-F902
[5]   Rarefaction of peritubular capillaries following ischemic acute renal failure: a potential factor predisposing to progressive nephropathy [J].
Basile, DP .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2004, 13 (01) :1-7
[6]   Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage [J].
Basile, DP ;
Donohoe, DL ;
Roethe, K ;
Mattson, DL .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2003, 284 (02) :F338-F348
[7]   Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function [J].
Basile, DP ;
Donohoe, D ;
Roethe, K ;
Osborn, JL .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2001, 281 (05) :F887-F899
[8]  
CHARRON AJ, 1985, AM J PHYSIOL-HEART C, V277, pH1996
[9]   Update on mechanisms of ischemic acute kidney injury [J].
Devarajan, Prasad .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2006, 17 (06) :1503-1520
[10]   Growth factors and apoptosis in acute renal injury [J].
Hammerman, MR .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 1998, 7 (04) :419-424