The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis

被引:306
作者
Walters, SB
Dubnau, E
Kolesnikova, I
Laval, F
Daffe, M
Smith, I
机构
[1] Publ Hlth Res Inst, TB Ctr, Newark, NJ 07103 USA
[2] CNRS, Dept Mecanismes Mol Infect Mycobacteriennes, Inst Pharmacol & Biol Struct, F-3107 Toulouse, France
[3] Univ Toulouse 3, F-3107 Toulouse, France
关键词
D O I
10.1111/j.1365-2958.2006.05102.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two-component signal transduction systems (2-CS) play an important role in bacterial pathogenesis. In the work presented here, we have studied the effects of a mutation in the Mycobacterium tuberculosis (Mtb) PhoPR 2-CS on the pathogenicity, physiology and global gene expression of this bacterial pathogen. Disruption of PhoPR causes a marked attenuation of growth in macrophages and mice and prevents growth in low-Mg2+ media. The inability to grow in THP-1 macrophages can be partially overcome by the addition of excess Mg2+ during infection. Global transcription assays demonstrate PhoP is a positive transcriptional regulator of several genes, but do not support the hypothesis that the Mtb PhoPR system is sensing Mg2+ starvation, as is the case with the Salmonella typhimurium PhoPQ 2-CS. The genes that were positively regulated include those found in the pks2 and the msl3 gene clusters that encode enzymes for the biosynthesis of sulphatides and diacyltrehalose and polyacyltrehalose respectively. Complementary biochemical studies, in agreement with recent results from another group, indicate that these complex lipids are also absent from the phoP mutant, and the lack of these components in its cell envelope may indirectly cause the mutant's high-Mg2+ growth requirement. The experiments reported here provide functional evidence for the PhoPR 2-CS involvement in Mtb pathogenesis, and they suggest that a major reason for the attenuation observed in the phoP mutant is the absence of certain complex lipids that are known to be important for virulence.
引用
收藏
页码:312 / 330
页数:19
相关论文
共 76 条
[1]   SALMONELLA-TYPHIMURIUM ACTIVATES VIRULENCE GENE-TRANSCRIPTION WITHIN ACIDIFIED MACROPHAGE PHAGOSOMES [J].
ARANDA, CMA ;
SWANSON, JA ;
LOOMIS, WP ;
MILLER, SI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10079-10083
[2]   Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv:: Effect on growth in culture and in macrophages [J].
Armitige, LY ;
Jagannath, C ;
Wanger, AR ;
Norris, SJ .
INFECTION AND IMMUNITY, 2000, 68 (02) :767-778
[3]   The virulence-associated twocomponent PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis [J].
Asensio, JG ;
Maia, C ;
Ferrer, NL ;
Barilone, N ;
Laval, F ;
Soto, CY ;
Winter, N ;
Daffé, M ;
Gicquel, B ;
Martín, C ;
Jackson, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (03) :1313-1316
[4]   Recognition of antimicrobial peptides by a bacterial sensor kinase [J].
Bader, MW ;
Sanowar, S ;
Daley, ME ;
Schneider, AR ;
Cho, US ;
Xu, WQ ;
Klevit, RE ;
Le Moual, H ;
Miller, S .
CELL, 2005, 122 (03) :461-472
[5]   Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides [J].
Bader, MW ;
Navarre, WW ;
Shiau, W ;
Nikaido, H ;
Frye, JG ;
McClelland, M ;
Fang, FC ;
Miller, SI .
MOLECULAR MICROBIOLOGY, 2003, 50 (01) :219-230
[6]   Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? [J].
Banu, S ;
Honoré, N ;
Saint-Joanis, B ;
Philpott, D ;
Prévost, MC ;
Cole, ST .
MOLECULAR MICROBIOLOGY, 2002, 44 (01) :9-19
[7]   Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis [J].
Belisle, JT ;
Vissa, VD ;
Sievert, T ;
Takayama, K ;
Brennan, PJ ;
Besra, GS .
SCIENCE, 1997, 276 (5317) :1420-1422
[8]   STRUCTURAL ELUCIDATION OF A NOVEL FAMILY OF ACYLTREHALOSES FROM MYCOBACTERIUM-TUBERCULOSIS [J].
BESRA, GS ;
BOLTON, RC ;
MCNEIL, MR ;
RIDELL, M ;
SIMPSON, KE ;
GLUSHKA, J ;
VANHALBEEK, H ;
BRENNAN, PJ ;
MINNIKIN, DE .
BIOCHEMISTRY, 1992, 31 (40) :9832-9837
[9]   The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival [J].
BlancPotard, AB ;
Groisman, EA .
EMBO JOURNAL, 1997, 16 (17) :5376-5385
[10]   A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica [J].
Buchmeier, N ;
Blanc-Potard, A ;
Ehrt, S ;
Piddington, D ;
Riley, L ;
Groisman, EA .
MOLECULAR MICROBIOLOGY, 2000, 35 (06) :1375-1382