Microgrid reliability modeling and battery scheduling using stochastic linear programming

被引:72
作者
Cardoso, G. [1 ]
Stadler, M. [2 ]
Siddiqui, A. [3 ,4 ]
Marnay, C. [2 ]
DeForest, N. [2 ]
Barbosa-Povoa, A. [1 ]
Ferrao, P. [1 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Lisbon, Portugal
[2] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA USA
[3] UCL, London WC1E 6BT, England
[4] Stockholm Univ, Stockholm, Sweden
关键词
Batteries; Optimal scheduling; Smart grids; Stochastic systems; Uncertainty; Microgrids; DISTRIBUTED ENERGY-SYSTEMS; GENERATION; OPTIMIZATION; UNCERTAINTY; STRATEGIES; OPERATION;
D O I
10.1016/j.epsr.2013.05.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6%. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 69
页数:9
相关论文
共 28 条
[1]   Distributed generation:: a definition [J].
Ackermann, T ;
Andersson, G ;
Söder, L .
ELECTRIC POWER SYSTEMS RESEARCH, 2001, 57 (03) :195-204
[2]  
[Anonymous], EUROPEAN T ELECT POW
[3]   Regulation of microgeneration and microgrids [J].
Costa, Paulo Moises ;
Matos, Manuel A. ;
Lopes, J. A. Pecas .
ENERGY POLICY, 2008, 36 (10) :3893-3904
[4]   Network integration of distributed power generation [J].
Dondi, P ;
Bayoumi, D ;
Haederli, C ;
Julian, D ;
Suter, M .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :1-9
[5]   Optimal design of supply chain networks under uncertain transient demand variations [J].
Georgiadis, Michael C. ;
Tsiakis, Panagiotis ;
Longinidis, Pantelis ;
Sofioglou, Maria K. .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2011, 39 (03) :254-272
[6]   Optimal operation of dispersed generation under uncertainty using mathematical programming [J].
Handschin, E. ;
Neise, F. ;
Neumann, H. ;
Schultz, R. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2006, 28 (09) :618-626
[7]   Modelling high level system design and unit commitment for a microgrid [J].
Hawkes, A. D. ;
Leach, M. A. .
APPLIED ENERGY, 2009, 86 (7-8) :1253-1265
[8]  
Higle J.L., 2005, TUTORIALS OPERATIONS, P1
[9]   Thermal-economic optimization of a distributed multi-generation energy system - A case study of Beijing [J].
Li, HW ;
Nalim, R ;
Haldi, PA .
APPLIED THERMAL ENGINEERING, 2006, 26 (07) :709-719
[10]   A multi-state Markov model for a short-term reliability analysis of a power generating unit [J].
Lisnianski, Anatoly ;
Elmakias, David ;
Laredo, David ;
Ben Haim, Hanoch .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2012, 98 (01) :1-6