Overexpressed Cavβ3 inhibits N-type (Cav2.2) calcium channel currents through a hyperpolarizing shift of "ultra-slow" and "closed-state" inactivation

被引:31
作者
Yasuda, T
Lewis, RJ
Adams, DJ [1 ]
机构
[1] Univ Queensland, Sch Biomed Sci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
关键词
voltage-dependent calcium channel; Xenopus oocyte; beta 3 auxiliary subunit; negative regulation; voltage-depenclent inactivation;
D O I
10.1085/jgp.200308967
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
It has been shown that P auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a hovel inhibitory effect of beta3 Subunit on macroscopic Ba2+ currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed beta3 (12.5 ng/ cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at "physiological" holding potentials (HPs) of -60 and -80 mV At a HP of -80 mV, coinjection of various concentrations (0-12.5 ng) of the beta3 with Ca,.2.2alpha(1) and alpha(2)delta enhanced the maximum conductance of expressed channels at lower beta3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The beta3-induced Current suppression was reversed at a HP of - 120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba-2divided by (40 mM) as a charge carrier also largely diminished the effect of P3 at -80 mV Therefore, experimental conditions (HP, divalent cation concentration, and P3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel P3 effect. Steady-state inactivation curves revealed that N-type channels exhibited "closed-state" inactivation without P3, and that P3 caused an similar to40 mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately -85 mV The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of P3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at -80 mV Similar "ultra-slow" inactivation was observed for N-type channels Without P3. Thus, P3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by Causing a hyperpolarizing shift of the inactivation without affecting "ultra-slow" and "closed-state" inactivation properties.
引用
收藏
页码:401 / 416
页数:16
相关论文
共 76 条
[1]  
ADAMS DJ, 1995, AUT NER SYS, V6, P153
[2]   Influence of L-type Ca channel alpha(2)/delta-subunit on ionic and gating current in transiently transfected HEK 293 cells [J].
Bangalore, R ;
Mehrke, G ;
Gingrich, K ;
Hofmann, F ;
Kass, RS .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 1996, 270 (05) :H1521-H1528
[3]   Elementary and global aspects of calcium signalling [J].
Berridge, MJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 499 (02) :291-306
[4]   FUNCTIONAL IMPACT OF SYNTAXIN ON GATING OF N-TYPE AND Q-TYPE CALCIUM CHANNELS [J].
BEZPROZVANNY, I ;
SCHELLER, RH ;
TSIEN, RW .
NATURE, 1995, 378 (6557) :623-626
[5]   The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit [J].
Bichet, D ;
Cornet, V ;
Geib, S ;
Carlier, E ;
Volsen, S ;
Hoshi, T ;
Mori, Y ;
De Waard, M .
NEURON, 2000, 25 (01) :177-190
[6]   HUMAN NEURONAL VOLTAGE-DEPENDENT CALCIUM CHANNELS - STUDIES ON SUBUNIT STRUCTURE AND ROLE IN CHANNEL ASSEMBLY [J].
BRUST, PF ;
SIMERSON, S ;
MCCUE, AF ;
DEAL, CR ;
SCHOONMAKER, S ;
WILLIAMS, ME ;
VELICELEBI, G ;
JOHNSON, EC ;
HARPOLD, MM ;
ELLIS, SB .
NEUROPHARMACOLOGY, 1993, 32 (11) :1089-1102
[7]   Evidence for two concentration-dependent processes for β-subunit effects on α1B calcium channels [J].
Cantí, C ;
Davies, A ;
Berrow, NS ;
Butcher, AJ ;
Page, KM ;
Dolphin, AC .
BIOPHYSICAL JOURNAL, 2001, 81 (03) :1439-1451
[8]   Interaction between G proteins and accessory β subunits in the regulation of α1B calcium channels in Xenopus oocytes [J].
Cantí, C ;
Bogdanov, Y ;
Dolphin, AC .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 527 (03) :419-432
[9]  
CASTELLANO A, 1993, J BIOL CHEM, V268, P3450
[10]   Structure and regulation of voltage-gated Ca2+ channels [J].
Catterall, WA .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2000, 16 :521-555