The hidden steps of domain skipping: Macrolactone ring size determination in the pikromycin modular polyketide synthase

被引:55
作者
Beck, BJ
Yoon, YJ
Reynolds, KA
Sherman, DH
机构
[1] Univ Minnesota, Dept Microbiol, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Inst Biotechnol, Minneapolis, MN 55455 USA
[3] Virginia Commonwealth Univ, Dept Med Chem, Richmond, VA 23219 USA
[4] Virginia Commonwealth Univ, Inst Struct Biol & Drug Discovery, Richmond, VA 23219 USA
来源
CHEMISTRY & BIOLOGY | 2002年 / 9卷 / 05期
关键词
D O I
10.1016/S1074-5521(02)00146-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The pikromycin (Pik) polyketide synthase (PKS) from Streptomyces venezuelae comprises four multifunctional polypeptides (PikAI, PikAII, PikAIII, and PikAIV). This PKS can generate 12- and 14-membered ring macrolactones (10-deoxymethynolide and narbonolide, respectively) through the activity of its terminal modules (PikAIII and PikAIV). We performed a series of experiments involving the functional replacement of PikAIV in mutant strains with homodimeric and heterodimeric PikAIV modules to investigate the details of macrolactone ring size determination. The results suggest a new and surprising mechanism by which the penultimate hexalketide chain elongation intermediate is transferred from PikAIII ACP(5) to PikAIV ACP(6) before release by the terminal thioesterase domain. Elucidation of this chain transfer mechanism provides important new details about alternative macrolactone ring size formation in modular PKSs and contributes to the potential for rational design of structural diversity by combinatorial biosynthesis.
引用
收藏
页码:575 / 583
页数:9
相关论文
共 18 条
  • [1] Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699
    August, PR
    Tang, L
    Yoon, YJ
    Ning, S
    Muller, R
    Yu, TW
    Taylor, M
    Hoffmann, D
    Kim, CG
    Zhang, XH
    Hutchinson, CR
    Floss, HG
    [J]. CHEMISTRY & BIOLOGY, 1998, 5 (02): : 69 - 79
  • [2] Mechanisms of molecular recognition in the pikromycin polyketide synthase
    Chen, S
    Xue, YQ
    Sherman, DH
    Reynolds, KA
    [J]. CHEMISTRY & BIOLOGY, 2000, 7 (12): : 907 - 918
  • [3] MODULAR ORGANIZATION OF GENES REQUIRED FOR COMPLEX POLYKETIDE BIOSYNTHESIS
    DONADIO, S
    STAVER, MJ
    MCALPINE, JB
    SWANSON, SJ
    KATZ, L
    [J]. SCIENCE, 1991, 252 (5006) : 675 - 679
  • [4] Functional orientation of the acyltransferase domain in a module of the erythromycin polyketide synthase
    Gokhale, RS
    Lau, J
    Cane, DE
    Khosla, C
    [J]. BIOCHEMISTRY, 1998, 37 (08) : 2524 - 2528
  • [5] Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase
    Kao, CM
    Pieper, R
    Cane, DE
    Khosla, C
    [J]. BIOCHEMISTRY, 1996, 35 (38) : 12363 - 12368
  • [6] Manipulation of modular polyketide syntheses
    Katz, L
    [J]. CHEMICAL REVIEWS, 1997, 97 (07) : 2557 - 2575
  • [7] Kieser T., 2000, PRACTICAL STREPTOMYC, DOI DOI 10.1111/J.1365-2427.2007.01876.X
  • [8] THE STREPTOMYCES PLASMID SCP2STAR - ITS FUNCTIONAL-ANALYSIS AND DEVELOPMENT INTO USEFUL CLONING VECTORS
    LYDIATE, DJ
    MALPARTIDA, F
    HOPWOOD, DA
    [J]. GENE, 1985, 35 (03) : 223 - 235
  • [9] Engineering a polyketide with a longer chain by insertion of an extra module into the erythromycin-producing polyketide synthase
    Rowe, CJ
    Böhm, IU
    Thomas, IP
    Wilkinson, B
    Rudd, BAM
    Foster, G
    Blackaby, AP
    Sidebottom, PJ
    Roddis, Y
    Buss, AD
    Staunton, J
    Leadlay, PF
    [J]. CHEMISTRY & BIOLOGY, 2001, 8 (05): : 475 - 485
  • [10] THE BIOSYNTHETIC GENE-CLUSTER FOR THE POLYKETIDE IMMUNOSUPPRESSANT RAPAMYCIN
    SCHWECKE, T
    APARICIO, JF
    MOLNAR, I
    KONIG, A
    KHAW, LE
    HAYDOCK, SF
    OLIYNYK, M
    CAFFREY, P
    CORTES, J
    LESTER, JB
    BOHM, GA
    STAUNTON, J
    LEADLAY, PF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) : 7839 - 7843