Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation

被引:22
作者
Buchholz, K. [2 ]
Tinazli, A. [3 ]
Kleefen, A. [3 ]
Dorfner, D. [2 ]
Pedone, D. [2 ]
Rant, U. [2 ]
Tampe, R. [3 ]
Abstreiter, G. [2 ]
Tornow, M. [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Semicond Technol, D-38106 Braunschweig, Germany
[2] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[3] Univ Frankfurt, Inst Biochem, Bioctr, D-60438 Frankfurt, Germany
关键词
D O I
10.1088/0957-4484/19/44/445305
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 mu m down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.
引用
收藏
页数:6
相关论文
共 14 条
[1]   Membrane on a chip:: A functional tethered lipid bilayer membrane on silicon oxide surfaces [J].
Atanasov, V ;
Knorr, N ;
Duran, RS ;
Ingebrandt, S ;
Offenhäusser, A ;
Knoll, W ;
Köper, I .
BIOPHYSICAL JOURNAL, 2005, 89 (03) :1780-1788
[2]  
Bushan B., 2007, SPRINGER HDB NANOTEC
[3]   Diffusion measurement of fluorescence-labeled amphiphilic molecules with a standard fluorescence microscope [J].
Dietrich, C ;
Merkel, R ;
Tampe, R .
BIOPHYSICAL JOURNAL, 1997, 72 (04) :1701-1710
[4]   Integrated microfluidic devices [J].
Erickson, D ;
Li, DQ .
ANALYTICA CHIMICA ACTA, 2004, 507 (01) :11-26
[5]   Whole cell patch clamp recording performed on a planar glass chip [J].
Fertig, N ;
Blick, RH ;
Behrends, JC .
BIOPHYSICAL JOURNAL, 2002, 82 (06) :3056-3062
[6]   Translating biomolecular recognition into nanomechanics [J].
Fritz, J ;
Baller, MK ;
Lang, HP ;
Rothuizen, H ;
Vettiger, P ;
Meyer, E ;
Güntherodt, HJ ;
Gerber, C ;
Gimzewski, JK .
SCIENCE, 2000, 288 (5464) :316-318
[7]   Electrical and mechanical properties of micromachined vacuum cavities [J].
Kiihamaki, J. ;
Ronkainen, H. ;
Haara, A. ;
Mattila, T. .
PHYSICA SCRIPTA, 2004, T114 :195-198
[8]   SMALL-VOLUME EXTRUSION APPARATUS FOR PREPARATION OF LARGE, UNILAMELLAR VESICLES [J].
MACDONALD, RC ;
MACDONALD, RI ;
MENCO, BPM ;
TAKESHITA, K ;
SUBBARAO, NK ;
HU, LR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1061 (02) :297-303
[9]   Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices [J].
Poghossian, A ;
Cherstvy, A ;
Ingebrandt, S ;
Offenhäusser, A ;
Schöning, MJ .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 111 :470-480
[10]   Silicon-on-insulator microfluidic device with monolithic sensor integration for μTAS applications [J].
Sharma, S ;
Buchholz, K ;
Luber, SM ;
Rant, U ;
Tornow, M ;
Abstreiter, G .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2006, 15 (02) :308-313