The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane

被引:149
作者
Sieber, JJ
Willig, KI
Heintzmann, R
Hell, SW
Lang, T
机构
[1] Max Planck Inst Biophys Chem, Dept Neurobiol, D-37077 Gottingen, Germany
[2] Max Planck Inst Biophys Chem, Dept NanoBiophoton, D-37077 Gottingen, Germany
关键词
D O I
10.1529/biophysj.105.079574
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the plasma membrane, syntaxin 1 and syntaxin 4 clusters de. ne sites at which secretory granules and caveolae fuse, respectively. It is widely believed that lipid phases are mandatory for cluster formation, as cluster integrity depends on cholesterol. Here we report that the native lipid environment is not sufficient for correct syntaxin 1 clustering and that additional cytoplasmic protein-protein interactions, primarily involving the SNARE motif, are required. Apparently no specific cofactors are needed because i), clusters form equally well in nonneuronal cells, and ii), as revealed by nanoscale subdiffraction resolution provided by STED microscopy, the number of clusters directly depends on the syntaxin 1 concentration. For syntaxin 4 clustering the N-terminal domain and the linker region are also dispensable. Moreover, clustering is specific because in both cluster types syntaxins mutually exclude one another at endogenous levels. We suggest that the SNARE motifs of syntaxin 1 and 4 mediate specific syntaxin clustering by homooligomerization, thereby spatially separating sites for different biological activities. Thus, syntaxin clustering represents a mechanism of membrane patterning that is based on protein-protein interactions.
引用
收藏
页码:2843 / 2851
页数:9
相关论文
共 42 条
[1]   The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters [J].
Aoyagi, K ;
Sugaya, T ;
Umeda, M ;
Yamamoto, S ;
Terakawa, S ;
Takahashi, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (17) :17346-17352
[2]   A cell-free system for regulated exocytosis in PC12 cells [J].
Avery, J ;
Ellis, DJ ;
Lang, T ;
Holroyd, P ;
Riedel, D ;
Henderson, RM ;
Edwardson, JM ;
Jahn, R .
JOURNAL OF CELL BIOLOGY, 2000, 148 (02) :317-324
[3]   A MARKER OF EARLY AMACRINE CELL-DEVELOPMENT IN RAT RETINA [J].
BARNSTABLE, CJ ;
HOFSTEIN, R ;
AKAGAWA, K .
DEVELOPMENTAL BRAIN RESEARCH, 1985, 20 (02) :286-290
[4]   THE SYNTAXIN FAMILY OF VESICULAR TRANSPORT RECEPTORS [J].
BENNETT, MK ;
GARCIAARRARAS, JE ;
ELFERINK, LA ;
PETERSON, K ;
FLEMING, AM ;
HAZUKA, CD ;
SCHELLER, RH .
CELL, 1993, 74 (05) :863-873
[5]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[6]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[7]   Structure and function of SNARE and SNARE-interacting proteins [J].
Brunger, AT .
QUARTERLY REVIEWS OF BIOPHYSICS, 2005, 38 (01) :1-47
[8]   The vesicle- and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes [J].
Chamberlain, LH ;
Gould, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (51) :49750-49754
[9]   SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis [J].
Chamberlain, LH ;
Burgoyne, RD ;
Gould, GW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5619-5624
[10]   A conformational switch in syntaxin during exocytosis:: role of munc18 [J].
Dulubova, I ;
Sugita, S ;
Hill, S ;
Hosaka, M ;
Fernandez, I ;
Südhof, TC ;
Rizo, J .
EMBO JOURNAL, 1999, 18 (16) :4372-4382