A wind density model to quantify the airborne spread of Culicoides species during North-Western Europe bluetongue epidemic, 2006

被引:110
作者
Hendrickx, Guy [1 ]
Gilbert, Marius [2 ]
Staubach, Christoph [3 ]
Elbers, Armin [4 ]
Mintiens, Koen [5 ]
Gerbier, Guillaume [6 ]
Ducheyne, Els [1 ]
机构
[1] Avia GIS, B-2980 Zoersel, Belgium
[2] Univ Libre Bruxelles, B-1050 Brussels, Belgium
[3] Budesforschungsinst Tiergesundheit, Friedrich Loeffler Inst, D-16868 Wusterhausen, Germany
[4] Univ Wageningen & Res Ctr, Cent Inst Anim Dis Control, Dept Virol, NL-8203 AA Lelystad, Netherlands
[5] Coordinat Ctr Vet Diagnost, Vet & Agrochem Res Ctr, B-1180 Brussels, Belgium
[6] Ctr Cooperat Int Rech Agron Dev, F-34398 Montpellier 5, France
关键词
Culicoides; Europe; bluetongue; wind density model; long-distance spread;
D O I
10.1016/j.prevetmed.2008.06.009
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Increased transport and trade as well as climate shifts play an important role in the introduction, establishment and spread of new pathogens. Arguably, the introduction of bluetongue virus (BTV) serotype 8 in Benelux, Germany and France in 2006 is such an example. After its establishment in receptive local vector and host Populations the continued spread of such a disease in a suitable environment will mainly depend on movement of infected vectors and animals. In this paper we explore how wind models can contribute to explain the spread of BTV in a temperate eco-climatic setting. Based on previous work in Greece and Bulgaria filtered wind density maps were computed using data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Six hourly forward wind trajectories were computed at pressure levels of 850 hPa for each infected farm as front the recorded onset of symptoms. The trajectories were filtered to remove wind events that do not contribute to possible spread of the vector. The suitable wind events were rastered and aggregated on a weekly basis to obtain weekly wind density maps. Next to this, cumulated wind density maps were also calculated to assess the overall impact of wind dispersal of vectors. A strong positive correlation was established between wind density data and the horizontal asymmetrical spread pattern of the 2006 BTV8 epidemic. It was shown that short (<5 km). medium (5-31 km) and long (>31 km) distance spread had a different impact on disease spread. Computed wind densities were linked to the medium/long-distance spread whilst short range spread was mainly driven by active Culicoides flight. Whilst previous work in the Mediterranean basin showed that wind driven spread of Culicoides over sea occurred over distances of up to 700 kin, this phenomenon was not observed over land. Long-distance spread over land followed a hopping pattern, i.e. with intermediary stops and establishment of local virus circulation clusters at distances of 35-85 km. Despite suitable wind densities, no long range spread was recorded over distances of 300-400 km. Factors preventing spread Eastwards to the UK and Northwards to Denmark during the 2006 epidemic are discussed. Towards the east both elevation and terrain roughness, causing air turbulences and drop down of Culicoides, were major factors restricting spread. It is concluded that the proposed approach opens new avenues for understanding the spread of vector-borne viruses in Europe. Future developments should take into consideration both physical and biological factors affecting spread. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:162 / 181
页数:20
相关论文
共 37 条
[1]   Possible introduction of bluetongue into the Balearic Islands, Spain, in 2000, via air streams [J].
Alba, A ;
Casal, J ;
Domingo, M .
VETERINARY RECORD, 2004, 155 (15) :460-461
[2]   PROGRESS IN CONTROLLING THE REINVASION OF WINDBORNE VECTORS INTO THE WESTERN AREA OF THE ONCHOCERCIASIS CONTROL PROGRAM IN WEST-AFRICA [J].
BAKER, RHA ;
GUILLET, P ;
SEKETELI, A ;
POUDIOUGO, P ;
BOAKYE, D ;
WILSON, MD ;
BISSAN, Y .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1990, 328 (1251) :731-750
[3]  
Baylis M, 2004, VETER ITAL SER, V40, P176
[4]   The re-emergence of bluetongue [J].
Baylis, M .
VETERINARY JOURNAL, 2002, 164 (01) :5-6
[5]   Models for the dispersal in Australia of the arbovirus vector, Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae) [J].
Bishop, AL ;
Barchia, IM ;
Spohr, LJ .
PREVENTIVE VETERINARY MEDICINE, 2000, 47 (04) :243-254
[6]   Effects of altitude, distance and waves of movement on the dispersal in Australia of the arbovirus vector, Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae) [J].
Bishop, AL ;
Spohr, LJ ;
Barchia, IM .
PREVENTIVE VETERINARY MEDICINE, 2004, 65 (3-4) :135-145
[7]   Air streams and the introduction of animal diseases borne on Culicoides (Diptera, Ceratopogonidae) into Israel [J].
Braverman, Y ;
Chechik, F .
REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 1996, 15 (03) :1037-1052
[8]   Identification of a novel bluetongue virus vector species of Culicoides in Sicily [J].
Caracappa, S ;
Torina, A ;
Guercio, A ;
Vitale, F ;
Calabrò, A ;
Purpari, G ;
Ferrantelli, V ;
Vitale, M ;
Mellor, PS .
VETERINARY RECORD, 2003, 153 (03) :71-74
[9]   An aerial netting study of insects migrating at high altitude over England [J].
Chapman, JW ;
Reynolds, DR ;
Smith, AD ;
Smith, ET ;
Woiwod, IP .
BULLETIN OF ENTOMOLOGICAL RESEARCH, 2004, 94 (02) :123-136
[10]  
CODINA B, 1999, CONTRIBUCIO ESTUDI R