Nonquadratic estimators of a quadratic functional

被引:40
作者
Cai, TT [1 ]
Low, MG [1 ]
机构
[1] Univ Penn, Dept Stat, Philadelphia, PA 19104 USA
关键词
Besov balls; Gaussian sequence model; information bound; minimax estimation; quadratic functional; quadratic estimators;
D O I
10.1214/009053605000000147
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation of a quadratic functional over parameter spaces that are not quadratically convex is considered. It is shown, in contrast to the theory for quadratically convex parameter spaces, that optimal quadratic rules are often rate suboptimal. In such cases minimax rate optimal procedures are constructed based on local thresholding. These nonquadratic procedures are sometimes fully efficient even when optimal quadratic rules have slow rates of convergence. Moreover, it is shown that when estimating a quadratic functional nonquadratic procedures may exhibit different elbow phenomena than quadratic procedures.
引用
收藏
页码:2930 / 2956
页数:27
相关论文
共 29 条
[1]  
Baraud Y, 2002, BERNOULLI, V8, P577
[2]  
Bickel Peter J, 1993, Efficient and adaptive estimation for semiparametric models, V4
[3]  
BICKEL PJ, 1988, SANKHYA SER A, V50, P381
[4]  
Brown LD, 1996, ANN STAT, V24, P2524
[5]  
Cai TT, 2004, ANN STAT, V32, P552
[6]  
CAI TT, 2006, IN PRESS ANN STAT, V34
[7]  
Donoho D. L., 1990, Journal of Complexity, V6, P290, DOI 10.1016/0885-064X(90)90025-9
[8]   MINIMAX RISK OVER HYPERRECTANGLES, AND IMPLICATIONS [J].
DONOHO, DL ;
LIU, RC ;
MACGIBBON, B .
ANNALS OF STATISTICS, 1990, 18 (03) :1416-1437
[9]  
Donoho DL, 1998, ANN STAT, V26, P879
[10]  
Donoho DL, 1996, ANN STAT, V24, P508