SBA: A Software Package for Generic Sparse Bundle Adjustment

被引:524
作者
Lourakis, Manolis I. A. [1 ]
Argyros, Antonis A. [1 ]
机构
[1] FORTH, Inst Comp Sci, Computat Vis & Robot Lab, Iraklion 70013, Greece
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2009年 / 36卷 / 01期
关键词
Algorithms; Design; Experimentation; Performance; Unconstrained optimization; nonlinear least squares; Levenberg-Marquardt; sparse Jacobian; bundle adjustment; structure and motion estimation; multiple-view geometry; engineering applications; ALGORITHM;
D O I
10.1145/1486525.1486527
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Bundle adjustment constitutes a large, nonlinear least-squares problem that is often solved as the last step of feature-based structure and motion estimation computer vision algorithms to obtain optimal estimates. Due to the very large number of parameters involved, a general purpose least-squares algorithm incurs high computational and memory storage costs when applied to bundle adjustment. Fortunately, the lack of interaction among certain subgroups of parameters results in the corresponding Jacobian being sparse, a fact that can be exploited to achieve considerable computational savings. This article presents sba, a publicly available C/C++ software package for realizing generic bundle adjustment with high efficiency and flexibility regarding parameterization.
引用
收藏
页数:30
相关论文
共 55 条
  • [1] Algorithm 837: AMD, an approximate minimum degree ordering algorithm
    Amestoy, PR
    Enseeiht-Irit
    Davis, TA
    Duff, IS
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (03): : 381 - 388
  • [2] Anderson E, 1999, LAPACK USERS GUIDE, DOI [10.1137/1.9780898719604, DOI 10.1137/1.9780898719604]
  • [3] [Anonymous], 2000, Multiple View Geometry in Computer Vision
  • [4] [Anonymous], P EUR C COMP VIS ECC
  • [5] [Anonymous], 1999, SPRINGER SCI
  • [6] [Anonymous], P EUR C COMP VIS
  • [7] [Anonymous], P IEEE C COMP VIS PA
  • [8] [Anonymous], 1990, 153 AT T BELL LAB
  • [9] [Anonymous], P INT C COMP VIS PAT
  • [10] Barrett R., 1994, TEMPLATES SOLUTION L, DOI [DOI 10.1137/1.9781611971538, 10.1137/1.9781611971538]