Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion

被引:27
作者
Adzhemyan, LT [1 ]
Antonov, NV [1 ]
Vasil'ev, AN [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198904, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/BF02557413
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the renormalization group method and the operator expansion in the Obukhov-Kraichnan model that describes the intermixing of a passive scalar admixture by a random Gaussian field of velocities with the correlator [v(t, x)v(t',x)] - [v(t, x)v(t', x')] proportional to delta(t - t')\x - x'\(epsilon), we prove that the anomalous scaling in the inertial interval is caused by the presence of "dangerous" composite operators (powers of the local dissipation rate) whose negative critical dimensions determine the anomalous exponents. These exponents are calculated up to the second order of the epsilon expansion.
引用
收藏
页码:1074 / 1078
页数:5
相关论文
共 33 条
[1]  
Adzhemyan L. T., 1999, The Field Theoretic Renormalization Group in Fully Developed Turbulence
[2]  
Adzhemyan L. Ts., 1989, Soviet Physics - JETP, V68, P733
[3]   Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar [J].
Adzhemyan, LT ;
Antonov, NV ;
Vasil'ev, AN .
PHYSICAL REVIEW E, 1998, 58 (02) :1823-1835
[4]   Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow [J].
Adzhemyan, LT ;
Antonov, NV .
PHYSICAL REVIEW E, 1998, 58 (06) :7381-7396
[5]  
ADZHEMYAN LT, 1996, PHYS-USP, V39, P1193, DOI DOI 10.1070/PU1996V039N12ABEH000183
[6]  
[Anonymous], 1998, QUANTUM FIELD RENORM
[7]  
[Anonymous], 1983, Special functions
[8]  
Antonov N. V., 1991, J SOVIET MATH, V54, P873
[9]  
ANTONOV NV, 1998, IP9816 SPBU
[10]   Three-point correlation function of a scalar mixed by an almost smooth random velocity field [J].
Balkovsky, E ;
Falkovich, G ;
Lebedev, V .
PHYSICAL REVIEW E, 1997, 55 (05) :R4881-R4884