Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway

被引:676
作者
Orozco-Cardenas, M [1 ]
Ryan, CA [1 ]
机构
[1] Washington State Univ, Inst Biol Chem, Pullman, WA 99163 USA
关键词
D O I
10.1073/pnas.96.11.6553
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrogen peroxide (H2O2) generated in response to wounding can be detected at wound sites and in distal leaf veins within 1 hr after wounding. The response is systemic and maximizes at about 4-6 hr in both wounded and unwounded leaves, and then declines. The timing of the response corresponds with an increase in wound-inducible polygalacturonase (PG) mRNA and enzyme activity previously reported, suggesting that oligogalacturonic acid (OGA) fragments produced by PG are triggering the H2O2 response. Systemin, OGA, chitosan, and methyl jasmonate (MJ) all induce the accumulation of H2O2 in leaves. Tomato plants transformed with an antisense prosystemin gene produce neither PG activity or H2O2 in leaves in response to wounding, implicating systemin as a primary wound signal. The antisense plants do produce both PG activity and H2O2 when supplied with systemin, OGA, chitosan, or MJ, A mutant tomato line compromised in the octadecanoid pathway does not exhibit PG activity or H2O2 in response to wounding, systemin, OGA, or chitosan, but does respond to MJ, indicating that the generation of H2O2 requires a functional octadecanoid signaling pathway. Among 18 plant species from six families that were assayed for wound-inducible PG activity and H2O2 generation, 14 species exhibited both wound-inducible PG activity and the generation of H2O2. Four species, all from the Fabaceae family, exhibited little or no wound-inducible PG activity and did not generate H2O2. The time course of wound-inducible PG activity and H2O2 in Arabidopsis thaliana leaves was similar to that found in tomato. The cumulative data suggest that systemic wound signals that induce PG activity and H2O2 are widespread in the plant kingdom and that the response may be associated with the defense of plants against both herbivores and pathogens.
引用
收藏
页码:6553 / 6557
页数:5
相关论文
共 27 条
[1]   Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity [J].
Alvarez, ME ;
Pennell, RI ;
Meijer, PJ ;
Ishikawa, A ;
Dixon, RA ;
Lamb, C .
CELL, 1998, 92 (06) :773-784
[2]   PLASMA-MEMBRANE REDOX ENZYME IS INVOLVED IN THE SYNTHESIS OF O2- AND H2O2 BY PHYTOPHTHORA ELICITOR-STIMULATED ROSE CELLS [J].
AUH, CK ;
MURPHY, TM .
PLANT PHYSIOLOGY, 1995, 107 (04) :1241-1247
[3]   A wound- and systemin-inducible polygalacturonase in tomato leaves [J].
Bergey, DR ;
Orozco-Cardenas, M ;
de Moura, DS ;
Ryan, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1756-1760
[4]   Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals [J].
Bergey, DR ;
Howe, GA ;
Ryan, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12053-12058
[5]   Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola [J].
Bestwick, CS ;
Brown, IR ;
Bennett, MHR ;
Mansfield, JW .
PLANT CELL, 1997, 9 (02) :209-221
[6]   FOLIAR OXIDATIVE STRESS AND INSECT HERBIVORY - PRIMARY COMPOUNDS, SECONDARY METABOLITES, AND REACTIVE OXYGEN SPECIES AS COMPONENTS OF INDUCED RESISTANCE [J].
BI, JL ;
FELTON, GW .
JOURNAL OF CHEMICAL ECOLOGY, 1995, 21 (10) :1511-1530
[7]   PROTEINASE INHIBITOR-INDUCING FACTOR ACTIVITY IN TOMATO LEAVES RESIDES IN OLIGOSACCHARIDES ENZYMICALLY RELEASED FROM CELL-WALLS [J].
BISHOP, PD ;
MAKUS, DJ ;
PEARCE, G ;
RYAN, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (06) :3536-3540
[8]  
BRISSON LF, 1994, PLANT CELL, V6, P1703, DOI 10.1105/tpc.6.12.1703
[9]  
Dangl JL, 1996, PLANT CELL, V8, P1793, DOI 10.1105/tpc.8.10.1793
[10]   Nitric oxide functions as a signal in plant disease resistance [J].
Delledonne, M ;
Xia, YJ ;
Dixon, RA ;
Lamb, C .
NATURE, 1998, 394 (6693) :585-588