Activators regenerated by electron transfer for atom transfer radical polymerization of styrene

被引:694
作者
Jakubowski, W [1 ]
Min, K [1 ]
Matyjaszewski, K [1 ]
机构
[1] Carnegie Mellon Univ, Ctr Macromol Engn, Dept Chem, Pittsburgh, PA 15213 USA
关键词
D O I
10.1021/ma0522716
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The amount of Cu-based catalysts in atom transfer radical polymerization (ATRP) of styrene has been reduced to a few ppm in the presence of the appropriate reducing agents such as FDA approved tin(II) 2-ethylhexanoate (Sn(EH)(2)) or glucose. The reducing agents constantly regenerate ATRP activator, the Cu(I) species, from the Cu(II) species, formed during termination process, without directly or indirectly producing initiating species that generate new chains. Moreover, the reducing agents allow starting an ATRP with the oxidatively stable Cu(II) species. The reducing/reactivating cycle may also eliminate air or some other radical traps in the system. This new catalytic system is based on regeneration of the activators for an ATRP by electron transfer and therefore was named activators regenerated by electron transfer (ARGET) ATRP. The optimum amount of reducing agent and minimal amount of ATRP Cu catalyst depend on the particular system. For example, styrene was polymerized with 10 ppm of CuCl2/Me6TREN and 100 ppm of Sn(EH)(2) resulting in a polystyrene with M-n = 63 000 (M-n,M-th = 64 000) and M-w/M-n = 1.17.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 39 条
[1]   Peptide-polymer bioconjugates:: hybrid block copolymers generated via living radical polymerizations from resin-supported peptides [J].
Becker, ML ;
Liu, JQ ;
Wooley, KL .
CHEMICAL COMMUNICATIONS, 2003, (02) :180-181
[2]   Rate coefficients of free-radical polymerization deduced from pulsed laser experiments [J].
Beuermann, S ;
Buback, M .
PROGRESS IN POLYMER SCIENCE, 2002, 27 (02) :191-254
[3]   Quantifying vinyl monomer coordination to CuI in solution and the effect of coordination on monomer reactivity in radical copolymerization [J].
Braunecker, WA ;
Tsarevsky, NV ;
Pintauer, T ;
Gil, RR ;
Matyjaszewski, K .
MACROMOLECULES, 2005, 38 (10) :4081-4088
[4]   Towards understanding monomer coordination in atom transfer radical polymerization:: synthesis of [CuI(PMDETA)(μ-M)][BPh4] (M = methyl acrylate, styrene, 1-octene, and methyl methacrylate) and structural studies by FT-IR and 1H NMR spectroscopy and X-ray crystallography [J].
Braunecker, WA ;
Pintauer, T ;
Tsarevsky, NV ;
Kickelbick, G ;
Matyjaszewski, K .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2005, 690 (04) :916-924
[5]   Functional polymers by atom transfer radical polymerization [J].
Coessens, V ;
Pintauer, T ;
Matyjaszewski, K .
PROGRESS IN POLYMER SCIENCE, 2001, 26 (03) :337-377
[6]  
Davis KA, 2002, ADV POLYM SCI, V159, P1
[7]   Kinetics of living radical polymerization [J].
Goto, A ;
Fukuda, T .
PROGRESS IN POLYMER SCIENCE, 2004, 29 (04) :329-385
[8]   Simultaneous reverse and normal initiation in atom transfer radical polymerization [J].
Gromada, J ;
Matyjaszewski, K .
MACROMOLECULES, 2001, 34 (22) :7664-7671
[9]   Atom transfer polymerisation of methyl methacrylate mediated by solid supported copper catalysts [J].
Haddleton, DM ;
Kukulj, D ;
Radigue, AP .
CHEMICAL COMMUNICATIONS, 1999, (01) :99-100
[10]   Fundamentals of supported catalysts for atom transfer radical polymerization (ATRP) and application of an immobilized/soluble hybrid catalyst system to ATRP [J].
Hong, SC ;
Matyjaszewski, K .
MACROMOLECULES, 2002, 35 (20) :7592-7605