Cartducin, a paralog of Acrp30/adiponectin, is induced during chondrogenic differentiation and promotes proliferation of chondrogenic precursors and chondrocytes

被引:63
作者
Maeda, T
Jikko, A
Abe, M
Yokohama-Tamaki, T
Akiyama, H
Furukawa, S
Takigawa, M
Wakisaka, S
机构
[1] Osaka Univ, Grad Sch Dent, Dept Anat & Cell Biol, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Dent, Dept Radiol, Osaka, Japan
[3] Okayama Univ, Grad Sch Med & Dent, Dept Biochem & Mol Dent, Okayama, Japan
关键词
D O I
10.1002/jcp.20493
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We previously reported that CORS26 gene, isolated from C3H10T1/2 cells treated with transforming growth factor-beta 1, was predominantly expressed in cartilage. Because the gene product is a kind of secretory protein produced by cartilage tissue, we named it "cartducin". Cartducin shares a similar modular organization to adipocyte-derived hormone, adiponectin. In this Study, we investigated cartducin function during chondrogenesis and cartilage development. In situ hybridization analysis showed that cartducin transcripts were restricted to the proliferating chondrocytes in the growth plate cartilage. Whole-mount in situ hybridization revealed that the first significant induction of cartducin expression occurred in the sclerotome, which contains a chondrogenic cell lineage between days 9.5 and 10.5 postcoitus (p.c.) during mouse embryogenesis. Chondrogenic differentiation by combined treatment with bone morphogenetic protein-2 and insulin induced cartducin expression along with type II and IX collagen expression in chondrogenic progenitor N1511 cells. To elucidate the direct action of cartducin on the cells, recombinant cartducin protein was expressed in and purified from Escherichia coli. The recombinant cartducin potentially forms homo-oligomers and promoted the proliferation of chondrogenic progenitor N1511 cells, and chondrocytic HCS-2/8 cells in a dose-dependent manner. On the other hand, cartducin did not affect the production of sulfated glycosarninoglycan (sGAG) in these cells. These findings indicate that cartducin is a novel growth factor and plays important roles in regulating both chondrogenesis and cartilage development by its direct stimulatory action on the proliferation of chondrogenic precursors and chondrocytes.
引用
收藏
页码:537 / 544
页数:8
相关论文
共 35 条
[1]   Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity [J].
Arita, Y ;
Kihara, S ;
Ouchi, N ;
Takahashi, M ;
Maeda, K ;
Miyagawa, J ;
Hotta, K ;
Shimomura, I ;
Nakamura, T ;
Miyaoka, K ;
Kuriyama, H ;
Nishida, M ;
Yamashita, S ;
Okubo, K ;
Matsubara, K ;
Muraguchi, M ;
Ohmoto, Y ;
Funahashi, T ;
Matsuzawa, Y .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 257 (01) :79-83
[2]   SOX9 directly regulates the type-II collagen gene [J].
Bell, DM ;
Leung, KKH ;
Wheatley, SC ;
Ng, LJ ;
Zhou, S ;
Ling, KW ;
Sham, MH ;
Koopman, P ;
Tam, PPL ;
Cheah, KSE .
NATURE GENETICS, 1997, 16 (02) :174-178
[3]   The adipocyte-secreted protein Acrp30 enhances hepatic insulin action [J].
Berg, AH ;
Combs, TP ;
Du, XL ;
Brownlee, M ;
Scherer, PE .
NATURE MEDICINE, 2001, 7 (08) :947-953
[4]   Sox9 is required for cartilage formation [J].
Bi, WM ;
Deng, JM ;
Zhang, ZP ;
Behringer, RR ;
de Crombrugghe, B .
NATURE GENETICS, 1999, 22 (01) :85-89
[5]   ABNORMAL BONE-GROWTH AND SELECTIVE TRANSLATIONAL REGULATION IN BASIC FIBROBLAST GROWTH-FACTOR (FGF-2) TRANSGENIC MICE [J].
COFFIN, JD ;
FLORKIEWICZ, RZ ;
NEUMANN, J ;
MORTHOPKINS, T ;
DORN, GW ;
LIGHTFOOT, P ;
GERMAN, R ;
HOWLES, PN ;
KIER, A ;
OTOOLE, BA ;
SASSE, J ;
GONZALEZ, AM ;
BAIRD, A ;
DOETSCHMAN, T .
MOLECULAR BIOLOGY OF THE CELL, 1995, 6 (12) :1861-1873
[6]  
CONLON RA, 1993, METHOD ENZYMOL, V225, P373
[7]  
CSERJESI P, 1995, DEVELOPMENT, V121, P1099
[8]   Fibroblast growth factor receptor 3 is a negative regulator of bone growth [J].
Deng, CX ;
WynshawBoris, A ;
Zhou, F ;
Kuo, A ;
Leder, P .
CELL, 1996, 84 (06) :911-921
[9]   IMPROVED QUANTITATION AND DISCRIMINATION OF SULFATED GLYCOSAMINOGLYCANS BY USE OF DIMETHYLMETHYLENE BLUE [J].
FARNDALE, RW ;
BUTTLE, DJ ;
BARRETT, AJ .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 883 (02) :173-177
[10]   The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties [J].
Gaboriaud, C ;
Juanhuix, J ;
Gruez, A ;
Lacroix, M ;
Darnault, C ;
Pignol, D ;
Verger, D ;
Fontecilla-Camps, JC ;
Arlaud, GJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (47) :46974-46982