Likelihood of rapidly increasing surface temperatures unaccompanied by strong warming in the free troposphere

被引:9
作者
Chase, TN [1 ]
Pielke, RA
Herman, B
Zeng, X
机构
[1] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[2] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[3] Univ Arizona, Dept Atmospher Sci, Tucson, AZ 85721 USA
关键词
climate change; model assessment; vertical temperature structure;
D O I
10.3354/cr025185
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent model simulations of the effects of increasing greenhouse gases combined with other anthropogenic effects predicted larger rates of warming in the mid and upper troposphere than near the Earth's surface. In multiple model comparisons we find that accelerated upper-level warming is simulated in all models for the greenhouse-gas/direct-aerosol forcing representative of 1979-2000. However, in a test of model predictive skill, a comparison with observations shows no warming of the free troposphere over this period. We assessed the likelihood that such a disparity between model projection and observations could be generated by forcing uncertainties or chance model fluctuations, by comparing all possible 22 yr temperature trends in a series of climate simulations. We find that it is extremely unlikely for near-surface air temperatures (surface temperatures) to increase at the magnitude observed since 1979 without a larger warming in the mid-troposphere. Warming of the surface relative to the mid-troposphere was also more likely in control simulations than under anthropogenic forcing. Because errors in the vertical temperature structure would be expected to create errors in water-vapor feedback, cloud cover and moisture content, these results suggest the need for great caution when applying the simulations to future climate predictions and to impact assessments.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 34 条
[1]   Climate forcing by aerosols - a hazy picture [J].
Anderson, TL ;
Charlson, RJ ;
Schwartz, SE ;
Knutti, R ;
Boucher, O ;
Rodhe, H ;
Heintzenberg, J .
SCIENCE, 2003, 300 (5622) :1103-1104
[2]  
[Anonymous], 2001, CONTRIBUTION WORKING, DOI DOI 10.1093/IJE/DYG059
[3]   Relative climatic effects of landcover change and elevated carbon dioxide combined with aerosols: A comparison of model results and observations [J].
Chase, TN ;
Pielke, RA ;
Kittel, TGF ;
Zhao, M ;
Pitman, AJ ;
Running, SW ;
Nemani, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D23) :31685-31691
[4]  
Christy JR, 2000, J ATMOS OCEAN TECH, V17, P1153, DOI 10.1175/1520-0426(2000)017<1153:MTTDCA>2.0.CO
[5]  
2
[6]  
Christy JR, 2003, J ATMOS OCEAN TECH, V20, P613, DOI 10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO
[7]  
2
[8]   Review of simulations of climate variability and change with the GFDL R30 coupled climate model [J].
Delworth, TL ;
Stouffer, RJ ;
Dixon, KW ;
Spelman, MJ ;
Knutson, TR ;
Broccoli, AJ ;
Kushner, PJ ;
Wetherald, RT .
CLIMATE DYNAMICS, 2002, 19 (07) :555-574
[9]   Warming asymmetry in climate change simulations [J].
Flato, GM ;
Boer, GJ .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (01) :195-198
[10]   The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate [J].
Flato, GM ;
Boer, GJ ;
Lee, WG ;
McFarlane, NA ;
Ramsden, D ;
Reader, MC ;
Weaver, AJ .
CLIMATE DYNAMICS, 2000, 16 (06) :451-467