V1 spinal neurons regulate the speed of vertebrate locomotor outputs

被引:278
作者
Gosgnach, S
Lanuza, GM
Butt, SJB
Saueressig, H
Zhang, Y
Velasquez, T
Riethmacher, D
Callaway, EM
Kiehn, O
Goulding, M
机构
[1] Salk Inst Biol Studies, Mol Neurobiol Lab, La Jolla, CA 92037 USA
[2] Salk Inst Biol Studies, Syst Neurobiol Lab, La Jolla, CA 92037 USA
[3] Karolinska Inst, Dept Neurosci, Mammalian Locomotor Lab, S-17177 Stockholm, Sweden
[4] Univ Hamburg, Ctr Mol Neurobiol, D-20251 Hamburg, Germany
关键词
D O I
10.1038/nature04545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord(1-3). These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs. In spite of efforts to address the organization of the locomotor CPG in walking animals(2,4-6), little is known about the identity and function of the spinal interneuron cell types that contribute to these locomotor networks. Here we use four complementary genetic approaches to directly address the function of mouse V1 neurons, a class of local circuit inhibitory interneurons that selectively express the transcription factor Engrailed1. Our results show that V1 neurons shape motor outputs during locomotion and are required for generating 'fast' motor bursting. These findings outline an important role for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements.
引用
收藏
页码:215 / 219
页数:5
相关论文
共 31 条
[1]   Postnatal phenotype and localization of spinal cord V1 derived interneurons [J].
Alvarez, FJ ;
Jonas, PC ;
Sapir, T ;
Hartley, R ;
Berrocal, MC ;
Geiman, EJ ;
Todd, AJ ;
Goulding, M .
JOURNAL OF COMPARATIVE NEUROLOGY, 2005, 493 (02) :177-192
[2]   Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat [J].
Angel, MJ ;
Jankowska, E ;
McCrea, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 2005, 563 (02) :597-610
[3]   Activity-dependent homeostatic specification of transmitter expression in embryonic neurons [J].
Borodinsky, LN ;
Root, CM ;
Cronin, JA ;
Sann, SB ;
Gu, XN ;
Spitzer, NC .
NATURE, 2004, 429 (6991) :523-530
[4]   Choline transporter 1 maintains cholinergic function in choline acetyltransferase haploinsufficiency [J].
Brandon, EP ;
Mellott, T ;
Pizzo, DP ;
Coufal, N ;
D'Amour, KA ;
Gobeske, K ;
Lortie, M ;
López-Coviella, I ;
Berse, B ;
Thal, LJ ;
Gage, FH ;
Blusztajn, JK .
JOURNAL OF NEUROSCIENCE, 2004, 24 (24) :5459-5466
[5]   Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination [J].
Brockschnieder, D ;
Lappe-Siefke, C ;
Goebbels, S ;
Boesl, MR ;
Nave, KA ;
Riethmacher, D .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (17) :7636-7642
[6]  
BURKE RE, 1998, SYNAPTIC ORG BRAIN, P77
[7]   Functional identification of Interneurons responsible for left-right coordination of hindlimbs in mammals [J].
Butt, SJB ;
Kiehn, O .
NEURON, 2003, 38 (06) :953-963
[8]  
Butt SJB, 2002, J NEUROSCI, V22, P9961
[9]   Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development [J].
Danielian, PS ;
McMahon, AP .
NATURE, 1996, 383 (6598) :332-334
[10]   Pax6 controls progenitor cell identity and neuronal fate in response to graded shh signaling [J].
Ericson, J ;
Rashbass, P ;
Schedl, A ;
BrennerMorton, S ;
Kawakami, A ;
vanHeyningen, V ;
Jessell, TM ;
Briscoe, J .
CELL, 1997, 90 (01) :169-180