pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response

被引:317
作者
Yoshida, H [1 ]
Oku, M [1 ]
Suzuki, M [1 ]
Mori, K [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Biophys, Sakyo Ku, Kyoto 6068502, Japan
关键词
D O I
10.1083/jcb.200508145
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Upon the accumulation of unfolded proteins in the mammalian endoplasmic reticulum (ER), X-box binding protein 1 (XBP1) premessenger RNA (premRNA) is converted to mature mRNA by unconventional splicing that is mediated by the endonuclease inositol-requiring enzyme 1. The transcription factor protein (p) XBP1 spliced (S), which is translated from mature XBP1 mRNA, contains the nuclear localization signal and the transcriptional activation domain and activates the transcription of target genes, including those encoding ER chaperones in the nucleus. We show that pXBP1 unspliced (U) encoded in XBP1 pre-mRNA was constitutively expressed and markedly accumulated at the recovery phase of ER stress. pXBP1(U) contained the nuclear exclusion signal instead of the transcriptional activation domain and shuttled between the nucleus and the cytoplasm. Interestingly, pXBP1(U) formed a complex with pXBP1(S), and the pXBP1(U)-pXBP1(S) complex was sequestered from the nucleus. Moreover, the complex was rapidly degraded by proteasomes because of the degradation motif contained in pXBP1(U). Thus, pXBP1(U) is a negative feedback regulator of pXBP1(S), which shuts off the transcription of target genes during the recovery phase of ER stress.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 30 条
  • [1] IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA
    Calfon, M
    Zeng, HQ
    Urano, F
    Till, JH
    Hubbard, SR
    Harding, HP
    Clark, SG
    Ron, D
    [J]. NATURE, 2002, 415 (6867) : 92 - 96
  • [2] Translational attenuation mediated by an mRNA intron
    Chapman, RE
    Walter, P
    [J]. CURRENT BIOLOGY, 1997, 7 (11) : 850 - 859
  • [3] TRANSCRIPTIONAL INDUCTION OF GENES ENCODING ENDOPLASMIC-RETICULUM RESIDENT PROTEINS REQUIRES A TRANSMEMBRANE PROTEIN-KINASE
    COX, JS
    SHAMU, CE
    WALTER, P
    [J]. CELL, 1993, 73 (06) : 1197 - 1206
  • [4] A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response
    Cox, JS
    Walter, P
    [J]. CELL, 1996, 87 (03) : 391 - 404
  • [5] CRM1 is an export receptor for leucine-rich nuclear export signals
    Fornerod, M
    Ohno, M
    Yoshida, M
    Mattaj, IW
    [J]. CELL, 1997, 90 (06) : 1051 - 1060
  • [6] Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
    Harding, HP
    Zhang, YH
    Ron, D
    [J]. NATURE, 1999, 397 (6716) : 271 - 274
  • [7] Regulated translation initiation controls stress-induced gene expression in mammalian cells
    Harding, HP
    Novoa, I
    Zhang, YH
    Zeng, HQ
    Wek, R
    Schapira, M
    Ron, D
    [J]. MOLECULAR CELL, 2000, 6 (05) : 1099 - 1108
  • [8] Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response
    Haze, K
    Okada, T
    Yoshida, H
    Yanagi, H
    Yura, T
    Negishi, M
    Mori, K
    [J]. BIOCHEMICAL JOURNAL, 2001, 355 : 19 - 28
  • [9] Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress
    Iwawaki, T
    Hosoda, A
    Okuda, T
    Kamigori, Y
    Nomura-Furuwatari, C
    Kimata, Y
    Tsuru, A
    Kohno, K
    [J]. NATURE CELL BIOLOGY, 2001, 3 (02) : 158 - 164
  • [10] Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls
    Kaufman, RJ
    [J]. GENES & DEVELOPMENT, 1999, 13 (10) : 1211 - 1233