Surface reconstruction by Voronoi filtering

被引:421
作者
Amenta, N [1 ]
Bern, M
机构
[1] Univ Texas, Austin, TX 78712 USA
[2] Xerox Corp, Palo Alto Res Ctr, Palo Alto, CA 94304 USA
关键词
D O I
10.1007/PL00009475
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give a simple combinatorial algorithm that computes a piecewise-linear approximation of a smooth surface from a finite set of sample points. The algorithm uses Voronoi vertices to remove triangles from the Delaunay triangulation. We prove the algorithm correct by showing that for densely sampled surfaces, where density depends on a local feature size function, the output is topologically valid and convergent (both pointwise and in surface normals) to the original surface. We briefly describe an implementation of the algorithm and show example outputs.
引用
收藏
页码:481 / 504
页数:24
相关论文
共 22 条
  • [1] Amenta N., 1998, Computer Graphics. Proceedings. SIGGRAPH 98 Conference Proceedings, P415, DOI 10.1145/280814.280947
  • [2] The crust and the β-skeleton:: Combinatorial curve reconstruction
    Amenta, N
    Bern, M
    Eppstein, D
    [J]. GRAPHICAL MODELS AND IMAGE PROCESSING, 1998, 60 (02): : 125 - 135
  • [3] Attali D., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P248, DOI 10.1145/262839.262980
  • [4] Bernardini F., 1997, Proceedings of the Thirteenth Annual Symposium on Computational Geometry, P481, DOI 10.1145/262839.263098
  • [5] BERNARDINI F, 1997, CSD97012 PURD U
  • [6] Bernardini F., 1997, P 9 CAN C COMP GEOM, P193
  • [7] GEOMETRIC STRUCTURES FOR 3-DIMENSIONAL SHAPE REPRESENTATION
    BOISSONNAT, JD
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1984, 3 (04): : 266 - 286
  • [8] BREGLER C, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P494, DOI 10.1109/ICCV.1995.466899
  • [9] Chew L.P., 1993, P 9 ANN S COMP GEOM, P274
  • [10] CLARKSON K, HULL PROGRAM CONVEX