Optimization of internal heat exchangers for hydrogen storage tanks utilizing metal hydrides

被引:116
作者
Garrison, Stephen L. [1 ]
Hardy, Bruce J. [1 ]
Gorbounov, Mikhail B. [2 ]
Tamburello, David A. [1 ]
Corgnale, Claudio [1 ]
vanHassel, Bart A. [2 ]
Mosher, Daniel A. [2 ]
Anton, Donald L. [1 ]
机构
[1] Savannah River Natl Lab, Aiken, SC 29808 USA
[2] United Technol Res Ctr, E Hartford, CT 06108 USA
关键词
Metal hydride; Sodium alanate; Optimization; Heat exchanger; Longitudinal fin; Transverse fin; HIERARCHICAL METHODOLOGY; SIMPLEX-METHOD; SIMULATION; MODELS; BEDS;
D O I
10.1016/j.ijhydene.2011.07.044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two detailed, unit cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL (R) Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab (R) scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work. Copyright (C) 2011, United Technologies Corporation. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications, LLC. All rights reserved.
引用
收藏
页码:2850 / 2861
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2020, TECHN SYST TARG ONB
[2]   Optimization of hydrogen storage in metal-hydride tanks [J].
Askri, F. ;
Salah, M. Ben ;
Jemni, A. ;
Ben Nasrallah, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) :897-905
[3]   Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials [J].
Bogdanovic, B ;
Brand, RA ;
Marjanovic, A ;
Schwickardi, M ;
Tölle, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 302 (1-2) :36-58
[4]   Hierarchical methodology for modeling hydrogen storage systems. Part II: Detailed models [J].
Hardy, Bruce J. ;
Anton, Donald L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) :2992-3004
[5]   Hierarchical methodology for modeling hydrogen storage systems. Part I: Scoping models [J].
Hardy, Bruce J. ;
Anton, Donald L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) :2269-2277
[6]   On the optimization of hydrogen storage in metal hydride beds [J].
Kikkinides, ES ;
Georgiadis, MC ;
Stubos, AK .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (06) :737-751
[7]   Dynamic modelling and optimization of hydrogen storage in metal hydride beds [J].
Kikkinides, Eustathios S. ;
Georgiadis, Michael C. ;
Stubos, Athanasios K. .
ENERGY, 2006, 31 (13) :2428-2446
[8]   Convergence properties of the Nelder-Mead simplex method in low dimensions [J].
Lagarias, JC ;
Reeds, JA ;
Wright, MH ;
Wright, PE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) :112-147
[9]   Impacts of external heat transfer enhancements on metal hydride storage tanks [J].
MacDonald, Brendan D. ;
Rowe, Andrew M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (12) :1721-1731
[10]   A novel design of a heat exchanger for a metal-hydrogen reactor [J].
Mellottli, S. ;
Askri, F. ;
Dhaou, H. ;
Jemni, A. ;
Ben Nasrallaha, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) :3501-3507