Microbiological and Geochemical Dynamics in Simulated-Heap Leaching of a Polymetallic Sulfide Ore

被引:81
作者
Wakeman, Kathryn [1 ]
Auvinen, Hannele [1 ]
Johnson, D. Barrie [1 ]
机构
[1] Bangor Univ, Sch Biol Sci, Bangor LL57 2UW, Gwynedd, Wales
关键词
acidophiles; Acidithiobacillus; bioleaching; Leptospirillum; metal sulfides; mineral heaps; sulfur ore;
D O I
10.1002/bit.21951
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The evolution of microbial populations involved in simulated-heap leaching of a polymetallic black schist sulfide ore (from the recently-commissioned Talvivaara mine, Finland) was monitored in aerated packed bed column reactors over a period of 40 weeks. The influence of ore particle size (2-6.5 mm and 6.5-12 mm) on changes in composition of the bioleaching microflora and mineral leaching dynamics in columns was investigated and compared to fine-grain (< 2 mu m) ore that was bioprocessed in shake flask cultures. Both column reactors and shake flasks were inoculated with 24 different species and strains of mineral-oxidizing and other acidophilic micro-organisms, and maintained at 37 degrees C. Mineral oxidation was most rapid in shake flask cultures, with about 80% of both manganese and nickel and 68% of zinc being leached within 6 weeks, though relatively little of the copper present in the ore was solubilised. The microbial consortium that emerged from the original inoculum was relatively simple in shake flasks, and was dominated by the iron-oxidizing autotroph Leptospirillum ferriphilum, with smaller numbers of Acid-imicrobium ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans. Both metal recovery and (for the most part) total numbers of prokaryotes were greater in the column reactor containing the medium-grain than that containing the coarse-grain ore. The bioleaching communities in the columns displayed temporal changes in composition and differed radically from those in shake flask cultures. While iron-oxidizing chemoautotrophic bacteria were always the most numerically dominant bacteria in the medium-grain column bioreactor, there were major shifts in the most abundant species present, with the type strain of Acidithiobacillus ferrooxidans dominating in the early phase of the experiment and other bacteria (At. ferrooxidans NO37 and L. ferriphilum) dominating from week 4 to week 40. With the coarse-grain column bioreactor, similar transitions in populations of iron-oxidizing chemoautotrophs were observed, though heterotrophic acidophiles were often the most abundant bacteria found in mineral leach liquors. Four bacteria not included in the mixed culture used to inoculate the columns were detected by biomolecular techniques and three of these (all Alicyclobacillus-like Firmicutes) were isolated as pure cultures. The fourth bacterium, identified from a clone library, was related to the Gram-positive sulfate reducer Desulfotomaculum salinum. All four were considered to have been present as endospores on the dried ore, which was not sterilized in the column bioreactors. Two of the Alicyclobacillus-like isolates were found, transiently, in large numbers in mineral leachates. The data support the hypothesis that temporal and spatial heterogeneity in mineral heaps create conditions that favour different mineral-oxidizing microflora, and that it is therefore important that sufficient microbial diversity is present in heaps to optimize metal extraction.
引用
收藏
页码:739 / 750
页数:12
相关论文
共 28 条
[1]  
ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3402
[2]  
BALLESTER A, 2007, MICR PROC MET SULF, P77
[3]  
Bridge TAM, 2000, GEOMICROBIOL J, V17, P193
[4]  
HOLDEN PJ, 1993, FEMS MICROBIOL REV, V11, P19, DOI 10.1111/j.1574-6976.1993.tb00262.x
[5]  
Johnson DB, 2007, PHYSIOLOGY AND BIOCHEMISTRY OF EXTREMOPHILES, P257
[6]  
Johnson D. Barrie., 2007, Biomining, P237, DOI [10.1007/978-3-540-34911-2_12, DOI 10.1007/978-3-540-34911-2_12]
[7]   Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis [J].
Johnson, DB ;
Okibe, N ;
Hallberg, KB .
JOURNAL OF MICROBIOLOGICAL METHODS, 2005, 60 (03) :299-313
[8]   Reclassification of 'Sulfobacillus thermosulfidooxidans subsp thermotolerans' strain K1 as Alicyclobacillus tolerans sp nov and Sulfobacillus disulfidooxidans Dufresne et al 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus [J].
Karavaiko, GI ;
Bogdanova, TI ;
Tourova, TP ;
Kondrat'eva, TF ;
Tsaplina, IA ;
Egorova, MA ;
Krasil'nikova, EN ;
Zakharchuk, LM .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2005, 55 :941-947
[9]   A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures [J].
Kolmert, Å ;
Wikström, P ;
Hallberg, KB .
JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 41 (03) :179-184
[10]  
Lane D., 1991, 16S/23S rRNA sequencing: Nucleic acid techniques in bacterial systematics, P115, DOI DOI 10.4135/9781446279281.N7