Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study

被引:214
作者
Abbasi, Ali [1 ,2 ,3 ]
Peelen, Linda M. [3 ]
Corpeleijn, Eva [1 ]
van der Schouw, Yvonne T. [3 ]
Stolk, Ronald P. [1 ]
Spijkerman, Annemieke M. W. [4 ]
van der A, Daphne L. [5 ]
Moons, Karel G. M. [3 ]
Navis, Gerjan [2 ]
Bakker, Stephan J. L. [2 ]
Beulens, Joline W. J. [3 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Epidemiol, Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Internal Med, Groningen, Netherlands
[3] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[4] Natl Inst Publ Hlth & Environm RIVM, Ctr Prevent & Hlth Serv Res, Bilthoven, Netherlands
[5] Natl Inst Publ Hlth & Environm RIVM, Ctr Nutr & Hlth, Bilthoven, Netherlands
来源
BMJ-BRITISH MEDICAL JOURNAL | 2012年 / 345卷
关键词
LIFE-STYLE FACTORS; IDENTIFYING INDIVIDUALS; CLINICAL-PRACTICE; MELLITUS; SCORES; POPULATION; PERFORMANCE; GLUCOSE; TOOL; PREVALENCE;
D O I
10.1136/bmj.e5900
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To identify existing prediction models for the risk of development of type 2 diabetes and to externally validate them in a large independent cohort. Data sources Systematic search of English, German, and Dutch literature in PubMed until February 2011 to identify prediction models for diabetes. Design Performance of the models was assessed in terms of discrimination (C statistic) and calibration (calibration plots and Hosmer-Lemeshow test). The validation study was a prospective cohort study, with a case cohort study in a random subcohort. Setting Models were applied to the Dutch cohort of the European Prospective Investigation into Cancer and Nutrition cohort study (EPIC-NL). Participants 38 379 people aged 20-70 with no diabetes at baseline, 2506 of whom made up the random subcohort. Outcome measure Incident type 2 diabetes. Results The review identified 16 studies containing 25 prediction models. We considered 12 models as basic because they were based on variables that can be assessed non-invasively and 13 models as extended because they additionally included conventional biomarkers such as glucose concentration. During a median follow-up of 10.2 years there were 924 cases in the full EPIC-NL cohort and 79 in the random subcohort. The C statistic for the basic models ranged from 0.74 (95% confidence interval 0.73 to 0.75) to 0.84 (0.82 to 0.85) for risk at 7.5 years. For prediction models including biomarkers the C statistic ranged from 0.81 (0.80 to 0.83) to 0.93 (0.92 to 0.94). Most prediction models overestimated the observed risk of diabetes, particularly at higher observed risks. After adjustment for differences in incidence of diabetes, calibration improved considerably. Conclusions Most basic prediction models can identify people at high risk of developing diabetes in a time frame of five to 10 years. Models including biomarkers classified cases slightly better than basic ones. Most models overestimated the actual risk of diabetes. Existing prediction models therefore perform well to identify those at high risk, but cannot sufficiently quantify actual risk of future diabetes.
引用
收藏
页数:16
相关论文
共 62 条
[1]   International Diabetes Federation: a consensus on Type 2 diabetes prevention [J].
Alberti, K. G. M. M. ;
Zimmet, P. ;
Shaw, J. .
DIABETIC MEDICINE, 2007, 24 (05) :451-463
[2]   The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes [J].
Alssema, M. ;
Vistisen, D. ;
Heymans, M. W. ;
Nijpels, G. ;
Glumer, C. ;
Zimmet, P. Z. ;
Shaw, J. E. ;
Eliasson, M. ;
Stehouwer, C. D. A. ;
Tabak, A. G. ;
Colagiuri, S. ;
Borch-Johnsen, K. ;
Dekker, J. M. .
DIABETOLOGIA, 2011, 54 (05) :1004-1012
[3]   Prognosis and prognostic research: validating a prognostic model [J].
Altman, Douglas G. ;
Vergouwe, Yvonne ;
Royston, Patrick ;
Moons, Karel G. M. .
BMJ-BRITISH MEDICAL JOURNAL, 2009, 338 :1432-1435
[4]   Predicting Diabetes: Clinical, Biological, and Genetic Approaches Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) [J].
Balkau, Beverley ;
Lange, Celine ;
Fezeu, Leopold ;
Tichet, Jean ;
De Lauzon-Guillain, Blandine ;
Cernichow, Sebastien ;
Fumeron, Frederic ;
Froguel, Philippe ;
Vaxillaire, Martine ;
Cauchi, Stephane ;
Ducimetiere, Pierre ;
Eschwege, Eveline .
DIABETES CARE, 2008, 31 (10) :2056-2061
[5]   Response to comment on: American Diabetes Association. Standards of medical care in diabetes-2011 (vol 34, pg e54, 2011) [J].
Wysham, C. H. ;
Kirkman, M. S. .
DIABETES CARE, 2011, 34 (08) :1887-1887
[6]   Cohort Profile: The EPIC-NL study [J].
Beulens, Joline W. J. ;
Monninkhof, Evelyn M. ;
Verschuren, W. M. Monique ;
van der Schouw, Yvonne T. - ;
Smit, Jet ;
Ocke, Marga C. ;
Jansen, Eugene H. J. M. ;
van Dieren, Susan ;
Grobbee, Diederick E. ;
Peeters, Petra H. M. ;
Bueno-de-Mesquita, H. Bas .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2010, 39 (05) :1170-1178
[7]   10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study [J].
Bray, G. A. ;
Chatellier, A. ;
Duncan, C. ;
Greenway, F. L. ;
Levy, E. ;
Ryan, D. H. ;
Polonsky, K. S. ;
Tobian, J. ;
Ehrmann, D. ;
Matulik, M. J. ;
Clark, B. ;
Czech, K. ;
DeSandre, C. ;
Hilbrich, R. ;
McNabb, W. ;
Semenske, A. R. ;
Goldstein, B. J. ;
Smith, K. A. ;
Wildman, W. ;
Pepe, C. ;
Goldberg, R. B. ;
Calles, J. ;
Ojito, J. ;
Castillo-Florez, S. ;
Florez, H. J. ;
Giannella, A. ;
Lara, O. ;
Veciana, B. ;
Haffner, S. M. ;
Montez, M. G. ;
Lorenzo, C. ;
Martinez, A. ;
Hamman, R. F. ;
Testaverde, L. ;
Bouffard, A. ;
Dabelea, D. ;
Jenkins, T. ;
Lenz, D. ;
Perreault, L. ;
Price, D. W. ;
Steinke, S. C. ;
Horton, E. S. ;
Poirier, C. S. ;
Swift, K. ;
Caballero, E. ;
Jackson, S. D. ;
Lambert, L. ;
Lawton, K. E. ;
Ledbury, S. ;
Kahn, S. E. .
LANCET, 2009, 374 (9702) :1677-1686
[8]   Risk Assessment Tools for Identifying Individuals at Risk of Developing Type 2 Diabetes [J].
Buijsse, Brian ;
Simmons, Rebecca K. ;
Griffin, Simon J. ;
Schulze, Matthias B. .
EPIDEMIOLOGIC REVIEWS, 2011, 33 (01) :46-62
[9]   AUSDRISK: an Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures [J].
Chen, Lei ;
Magliano, Dianna J. ;
Balkau, Beverley ;
Colagiuri, Stephen ;
Zimmet, Paul Z. ;
Tonkin, Andrew M. ;
Mitchell, Paul ;
Phillips, Patrick J. ;
Shaw, Jonathan E. .
MEDICAL JOURNAL OF AUSTRALIA, 2010, 192 (04) :197-202
[10]   Comparing risk prediction models [J].
Collins, Gary S. ;
Moons, Karel G. M. .
BRITISH MEDICAL JOURNAL, 2012, 344