Analytic expression for the mean time to absorption for a random walker on the Sierpinski gasket

被引:114
作者
Kozak, JJ [1 ]
Balakrishnan, V
机构
[1] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[2] Free Univ Brussels, Ctr Nonlinear Phenomena & Complex Syst, B-1050 Brussels, Belgium
[3] Indian Inst Technol, Dept Phys, Madras 600036, Chennai, India
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 02期
关键词
D O I
10.1103/PhysRevE.65.021105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The exact analytic expression for the mean time to absorption (or mean walk length) for a particle performing a random walk on a finite Sierpinski gasket with a trap at one vertex is found to be T-(n) =[3(n)5(n+1) + 4(5(n)) - 3(n)]/(3(n+1) + 1) where n denotes the generation index of the gasket, and the mean is over a set of starting points of the walk distributed uniformly over all the other sites of the gasket. In terms of the number N-n of sites on the gasket and the spectral dimension (d) over tilde of the gasket, the precise asymptotic behavior for large N-n is T-(n)-->1/3(2N(n))(2/(d) over tilde)similar toN(1.464). This serves as a partial check on our result, as it is (a) intermediate between the-known results Tsimilar toN(2) (d= 1) and Tsimilar toN In N (d= 2) for random walks on d-dimensional Euclidean lattices and (b) consistent with the known result for the asymptotic behavior of the mean number of distinct sites visited in a random walk on a fractal lattice.
引用
收藏
页数:5
相关论文
共 15 条
[1]   SUPERCONDUCTIVITY OF NETWORKS - A PERCOLATION APPROACH TO THE EFFECTS OF DISORDER [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1983, 27 (03) :1541-1557
[2]   RANDOM-WALKS ON FRACTALS [J].
BALAKRISHNAN, V .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 32 (03) :201-210
[3]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[4]   RANDOM-WALK ON FRACTALS - NUMERICAL-STUDIES IN 2 DIMENSIONS [J].
DAURIAC, JCA ;
BENOIT, A ;
RAMMAL, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (17) :4039-4051
[5]   DIFFUSION IN REGULAR AND DISORDERED LATTICES [J].
HAUS, JW ;
KEHR, KW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 150 (5-6) :263-406
[6]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[7]   RANDOM-WALKS WITH SELF-SIMILAR CLUSTERS - (STOCHASTIC-PROCESSES STABLE DISTRIBUTIONS-FRACTALS-NONDIFFERENTIABLE FUNCTIONS) [J].
HUGHES, BD ;
SHLESINGER, MF ;
MONTROLL, EW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (06) :3287-3291
[8]   FRACTAL AND LACUNARY STOCHASTIC-PROCESSES [J].
HUGHES, BD ;
MONTROLL, EW ;
SHLESINGER, MF .
JOURNAL OF STATISTICAL PHYSICS, 1983, 30 (02) :273-283
[9]   Chemical reactions and reaction efficiency in compartmentalized systems [J].
Kozak, JJ .
ADVANCES IN CHEMICAL PHYSICS, VOLUME 115, 2000, 115 :245-406
[10]  
Mandelbrot BB., 1977, FRACTAL GEOMETRY NAT