DEF-1/ASAP1 is a GTPase-activating protein (GAP) for ARF1 that enhances cell motility through a GAP-dependent mechanism

被引:76
作者
Furman, C
Short, SM
Subramanian, RR
Zetter, BR
Roberts, TM [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Canc Biol, Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Childrens Hosp, Dept Surg Res, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M109149200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DEF-1/ASAP1 is an ADP-ribosylation factor GTPase-activating protein (ARF GAP) that localizes to focal adhesions and is involved in cytoskeletal regulation. In this paper, we use a cell-based ARF GAP assay to demonstrate that DEF-1 functions as a GAP for ARF1 and not ARF6 in vivo. This degree of substrate preference was unique to DEF-1, as other ARF GAP proteins, ACAP1, ACAP2, and ARFGAP1, were able to function on both ARF1 and ARF6. Since transient overexpression of DEF-1 has been shown to interfere with focal adhesion formation and platelet-derived growth factor-induced membrane ruffling, we investigated whether NIH 3T3 cells stably expressing DEF-1 have altered cell motility. Here we report that ectopic DEF-1 enhances cell migration toward PDGF as well as IGF-1. This chemotactic effect appears to result from a general increase in cell motility, as DEF-1-expressing cells also exhibit enhanced levels of basal and chemokinetic motility. The increase in cell motility is dependent on DEF-1 GAP activity, since a DEF-1 mutant lacking the GAP domain failed to stimulate motility. This suggests that DEF-1 alters cell motility through the deactivation of ARF1. In contrast, the inhibition of cell spreading by DEF-1 was not dependent on GAP activity, indicating that spreading and motility are altered by DEF-1 through different pathways.
引用
收藏
页码:7962 / 7969
页数:8
相关论文
共 37 条
[1]  
Andreev J, 1999, MOL CELL BIOL, V19, P2338
[2]   ASAP1, a phospholipid-dependent Arf GTPase-activating protein that associates with and is phosphorylated by Src [J].
Brown, MT ;
Andrade, J ;
Radhakrishna, H ;
Donaldson, JG ;
Cooper, JA ;
Randazzo, PA .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :7038-7051
[3]  
BURRIDGE K, 1988, ANNU REV CELL BIOL, V4, P487, DOI 10.1146/annurev.cb.04.110188.002415
[4]   The role of ARF and Rab GTPases in membrane transport [J].
Chavrier, P ;
Goud, B .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (04) :466-475
[5]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[6]   Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting [J].
Cosson, P ;
Letourneur, F .
CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (04) :484-487
[7]   THE ARF1 GTPASE-ACTIVATING PROTEIN - ZINC-FINGER MOTIF AND GOLGI-COMPLEX LOCALIZATION [J].
CUKIERMAN, E ;
HUBER, I ;
ROTMAN, M ;
CASSEL, D .
SCIENCE, 1995, 270 (5244) :1999-2002
[8]   ARF6 targets recycling vesicles to the plasma membrane: Insights from an ultrastructural investigation [J].
D'Souza-Schorey, C ;
van Donselaar, E ;
Hsu, VW ;
Yang, CZ ;
Stahl, PD ;
Peters, PJ .
JOURNAL OF CELL BIOLOGY, 1998, 140 (03) :603-616
[9]  
DASCHER C, 1994, J BIOL CHEM, V269, P1437
[10]   ARF - A KEY REGULATORY SWITCH IN MEMBRANE TRAFFIC AND ORGANELLE STRUCTURE [J].
DONALDSON, JG ;
KLAUSNER, RD .
CURRENT OPINION IN CELL BIOLOGY, 1994, 6 (04) :527-532