Quantification of energy losses in organic solar cells from temperature-dependent device characteristics

被引:63
作者
Hoermann, Ulrich [1 ]
Kraus, Julia [1 ]
Gruber, Mark [1 ]
Schuhmair, Christoph [1 ]
Linderl, Theresa [1 ]
Grob, Stefan [1 ]
Kapfinger, Stephan [1 ,2 ]
Klein, Konrad [3 ]
Stutzman, Martin [2 ,3 ]
Krenner, Hubert J. [1 ,2 ]
Bruetting, Wolfgang [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86159 Augsburg, Germany
[2] Nanosyst Initiat Munich, D-80799 Munich, Germany
[3] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 23期
关键词
OPEN-CIRCUIT VOLTAGE; CHARGE-TRANSFER STATES; EXCITON DISSOCIATION; PHOTOVOLTAIC CELLS; POLYMER; FILMS; DIINDENOPERYLENE; INTERFACES; EFFICIENCY; C-60;
D O I
10.1103/PhysRevB.88.235307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Owing to the excitonic nature of photoexcitations in organic semiconductors, the working mechanism of organic solar cells relies on the donor-acceptor (D/A) concept enabling photoinduced charge transfer at the interface between two organic materials with suitable energy-level alignment. However, the introduction of such a heterojunction is accompanied by additional energy losses compared to an inorganic homojunction cell due to the presence of a charge-transfer (CT) state at the D/A interface. By careful examination of planar heterojunctions of the molecular semiconductors diindenoperylene (DIP) and C-60 we demonstrate that three different analysis techniques of the temperature dependence of solar-cell characteristics yield reliable values for the effective photovoltaic energy gap at the D/A interface. The retrieved energies are shown to be consistent with direct spectroscopic measurements and the D/A energy-level offset determined by photoemission spectroscopy. Furthermore, we verify the widespread assumption that the activation energy of the dark saturation current Delta E and the CT energy E-CT may be regarded as identical. The temperature-dependent analysis of open-circuit voltage V-OC and dark saturation current is then applied to a variety of molecular planar heterojunctions. The congruency of Delta E and E-CT is again found for all material systems with the exception of copper phthalocyanine/C-60. The general rule of thumb for organic semiconductor heterojunctions, that VOC at room temperature is roughly half a volt below the CT energy, is traced back to comparable intermolecular electronic coupling in all investigated systems.
引用
收藏
页数:13
相关论文
共 61 条
[1]   Optical spectra and photoluminescence of C-60 thin films [J].
Capozzi, V ;
Casamassima, G ;
Lorusso, GF ;
Minafra, A ;
Piccolo, R ;
Trovato, T ;
Valentini, A .
SOLID STATE COMMUNICATIONS, 1996, 98 (09) :853-858
[2]   Charge Photogeneration in Organic Solar Cells [J].
Clarke, Tracey M. ;
Durrant, James R. .
CHEMICAL REVIEWS, 2010, 110 (11) :6736-6767
[3]   Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells [J].
Deibel, Carsten ;
Strobel, Thomas ;
Dyakonov, Vladimir .
ADVANCED MATERIALS, 2010, 22 (37) :4097-4111
[4]   Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors [J].
Djurovich, Peter I. ;
Mayo, Elizabeth I. ;
Forrest, Stephen R. ;
Thompson, Mark E. .
ORGANIC ELECTRONICS, 2009, 10 (03) :515-520
[5]   Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds [J].
Duhm, Steffen ;
Salzmann, Ingo ;
Heimel, Georg ;
Oehzelt, Martin ;
Haase, Anja ;
Johnson, Robert L. ;
Rabe, Juergen P. ;
Koch, Norbert .
APPLIED PHYSICS LETTERS, 2009, 94 (03)
[6]   Exciton Dynamics at CuPc/C60 Interfaces: Energy Dependence of Exciton Dissociation [J].
Dutton, G. J. ;
Robey, S. W. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (36) :19173-19181
[7]   Elucidating the interplay between dark current coupling and open circuit voltage in organic photovoltaics [J].
Erwin, Patrick ;
Thompson, Mark E. .
APPLIED PHYSICS LETTERS, 2011, 98 (22)
[8]  
Fahrenbruch A. L., 1979, Solar energy conversion. Solid-state physics aspects, P257
[9]  
Fox M., 2012, Optische Eigenschaften von Festkorpern
[10]   Ideal diode equation for organic heterojunctions. I. Derivation and application [J].
Giebink, N. C. ;
Wiederrecht, G. P. ;
Wasielewski, M. R. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2010, 82 (15)