Organization of the human motor system as studied by functional magnetic resonance imaging

被引:52
作者
Mattay, VS [1 ]
Weinberger, DR [1 ]
机构
[1] NIMH, Intramural Res Program, Clin Brain Disorders Branch, NIH, Bethesda, MD 20892 USA
关键词
BOLD fMRI; functional MRI; motor abnormalities; neuroimaging;
D O I
10.1016/S0720-048X(99)00049-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI), because of its superior resolution and unlimited repeatability, can be particularly useful in studying functional aspects of the human motor system, especially plasticity, and somatotopic and temporal organization. In this survey, while describing studies that have reliably used BOLD fMRI to examine these aspects of the motor system, we also discuss studies that investigate the neural substrates underlying motor skill acquisition, motor imagery, production of motor sequences; effect of rate and force of movement on brain activation and hemispheric control of motor function. In the clinical realm, in addition to the presurgical evaluation of neurosurgical patients, BOLD fMRI has been used to explore the mechanisms underlying motor abnormalities in patients with neuropsychiatric disorders and the mechanisms underlying reorganization or plasticity of the motor system following a cerebral insult. (C) 1999 Published by Elsevier Science Ireland Ltd. All rights reserved.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 100 条
[1]  
AKBARIAN S, 1993, ARCH GEN PSYCHIAT, V50, P178
[2]   FUNCTIONAL ARCHITECTURE OF BASAL GANGLIA CIRCUITS - NEURAL SUBSTRATES OF PARALLEL PROCESSING [J].
ALEXANDER, GE ;
CRUTCHER, MD .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :266-271
[3]   MICROSTIMULATION OF THE PRIMATE NEOSTRIATUM .2. SOMATOTOPIC ORGANIZATION OF STRIATAL MICROEXCITABLE ZONES AND THEIR RELATION TO NEURONAL RESPONSE PROPERTIES [J].
ALEXANDER, GE ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 53 (06) :1417-1430
[4]   Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: Findings and implications for clinical management [J].
Atlas, SW ;
Howard, RS ;
Maldjian, J ;
Alsop, D ;
Detre, JA ;
Listerud, J ;
DEsposito, M ;
Judy, KD ;
Zager, E ;
Stecker, M .
NEUROSURGERY, 1996, 38 (02) :329-337
[5]  
Biswal B, 1998, AM J NEURORADIOL, V19, P1509
[6]   FUNCTIONAL COOPERATIVITY OF HUMAN CORTICAL MOTOR AREAS DURING SELF-PACED SIMPLE FINGER MOVEMENTS - A HIGH-RESOLUTION MRI STUDY [J].
BOECKER, H ;
KLEINSCHMIDT, A ;
REQUARDT, M ;
HANICKE, W ;
MERBOLDT, KD ;
FRAHM, J .
BRAIN, 1994, 117 :1231-1239
[7]   THE ROLE OF THE BASAL GANGLIA IN MOTOR CONTROL - CONTRIBUTIONS FROM PET [J].
BROOKS, DJ .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1995, 128 (01) :1-13
[8]   Functional magnetic resonance imaging in schizophrenia: Initial methodology and evaluation of the motor cortex [J].
Buckley, PF ;
Friedman, L ;
Wu, D ;
Lai, S ;
Meltzer, HY ;
Haacke, EM ;
Miller, D ;
Lewin, JS .
PSYCHIATRY RESEARCH-NEUROIMAGING, 1997, 74 (01) :13-23
[9]   Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis [J].
Cao, Y ;
D'Olhaberriague, L ;
Vikingstad, EM ;
Levine, SR ;
Welch, KMA .
STROKE, 1998, 29 (01) :112-122
[10]   NEURONAL-ACTIVITY IN THE SUPPLEMENTARY EYE FIELD DURING ACQUISITION OF CONDITIONAL OCULOMOTOR ASSOCIATIONS [J].
CHEN, LL ;
WISE, SP .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (03) :1101-1121