A blend of first-principles and kinetic lattice Monte Carlo computation to optimize samarium-doped ceria

被引:32
作者
Dholabhai, Pratik P. [1 ]
Adams, James B. [1 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
关键词
SOLID OXIDE FUEL; ELECTROLYTE MATERIALS; ELECTRICAL-PROPERTIES; MOLECULAR-DYNAMICS; IONIC-CONDUCTIVITY; FLUORITE-STRUCTURE; CELLS; SM; ENERGY; GD;
D O I
10.1007/s10853-012-6398-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solid oxide fuel cells (SOFCs) have been acknowledged as a possible future source for clean and efficient electric power generation. One of the most important goals in the SOFCs research is to decrease the operating temperature, which in turn will improve the stability and decrease the cost of various components enabling its widespread utilization. For realizing the aforementioned goal, it is imperative to identify suitable electrolyte materials that show enhanced conductivity in the intermediate temperature range (773-1,073 K). Sm-doped ceria (SDC) is considered a promising candidate for use as an electrolyte material for SOFC operation in intermediate temperature range due to the high oxygen ion conductivity. In this article, we present a theoretical investigation using first-principles and kinetic lattice Monte Carlo (KLMC) computations to highlight the trends in oxygen ion conductivity as a function of dopant content and temperature in SDC. Using first-principles calculations, oxygen vacancy formation and migration were examined at first, second, and third nearest neighbor positions to a Sm ion. The activation energies for oxygen vacancy migration along various pathways in SDC computed using first-principles were used as input to the KLMC model to study vacancy mediated diffusion. SDC with 20 % mole fraction of dopant content yields the maximum conductivity, which is in very good agreement with experimentally identified compositions. Rationale for increase in conductivity as a function of increase in dopant content and subsequent decrease in conductivity at higher dopant fractions in SDC is presented. This combined methodology of first-principles and KLMC computations is a useful tool for the design and identification of various ceria-based electrolyte materials used in SOFCs.
引用
收藏
页码:7530 / 7541
页数:12
相关论文
共 52 条
[1]   Redox properties of CeO2-MO2 (M=Ti, Zr, Hf, or Th) solid solutions from first principles calculations [J].
Andersson, D. A. ;
Simak, S. I. ;
Skorodumova, N. V. ;
Abrikosov, I. A. ;
Johansson, B. .
APPLIED PHYSICS LETTERS, 2007, 90 (03)
[2]   Optimization of ionic conductivity in doped ceria [J].
Andersson, DA ;
Simak, SI ;
Skorodumova, NV ;
Abrikosov, IA ;
Johansson, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3518-3521
[3]   AC-IMPEDANCE STUDIES OF RARE-EARTH-OXIDE DOPED CERIA [J].
BALAZS, GB ;
GLASS, RS .
SOLID STATE IONICS, 1995, 76 (1-2) :155-162
[4]  
Bhochl PE, 1994, PHYS REV B, V50, P17953
[5]   Predicting the optimal dopant concentration in gadolinium doped ceria: a kinetic lattice Monte Carlo approach [J].
Dholabhai, Pratik P. ;
Anwar, Shahriar ;
Adams, James B. ;
Crozier, Peter A. ;
Sharma, Renu .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (01)
[6]   Kinetic lattice Monte Carlo model for oxygen vacancy diffusion in praseodymium doped ceria: Applications to materials design [J].
Dholabhai, Pratik P. ;
Anwar, Shahriar ;
Adams, James B. ;
Crozier, Peter ;
Sharma, Renu .
JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (04) :811-817
[7]   A density functional study of defect migration in gadolinium doped ceria [J].
Dholabhai, Pratik P. ;
Adams, James B. ;
Crozier, Peter ;
Sharma, Renu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (28) :7904-7910
[8]   Oxygen vacancy migration in ceria and Pr-doped ceria: A DFT plus U study [J].
Dholabhai, Pratik P. ;
Adams, James B. ;
Crozier, Peter ;
Sharma, Renu .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (09)
[9]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[10]   Co-doped ceria-based solid solution in the CeO2-M2O3-CaO, M = Sm, Gd system [J].
Dudek, Magdalena ;
Rapacz-Kmita, Alicja ;
Mroczkowska, Maja ;
Mosialek, Michal ;
Mordarski, Grzegorz .
ELECTROCHIMICA ACTA, 2010, 55 (14) :4387-4394