Short random walks on graphs

被引:20
作者
Barnes, G
Feige, U
机构
[1] MAX PLANCK INST INFORMAT, SAARBRUCKEN, GERMANY
[2] WEIZMANN INST SCI, DEPT MATH APPL, IL-76100 REHOVOT, ISRAEL
关键词
random walk; graph; Markov chain;
D O I
10.1137/S0895480194264988
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The short-term behavior of random walks on graphs is studied, in particular, the rate at which a random walk discovers new vertices and edges. A conjecture by Linial, that the expected time to find N distinct vertices is O(N-3) is proved. In addition, upper bounds of O(M(2)) on the expected time to traverse M edges and of O(MN) on the expected time to either visit N vertices or traverse M edges (whichever comes first) are proved.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 24 条
[1]  
AJTAI M, 1987, 19TH P ACM S THEOR C, P132
[2]  
Aldous DJ., 1988, J THEORET PROBAB, V2, P91, DOI [DOI 10.1007/BF01048272, 10.1007/BF01048272]
[3]  
Aleliunas R., 1979, 20th Annual Symposium of Foundations of Computer Science, P218, DOI 10.1109/SFCS.1979.34
[4]  
[Anonymous], 1993, REVERSIBLE MARKOV CH
[5]  
Barnes G., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P728, DOI 10.1145/167088.167275
[6]  
BRODER A, 1989, J THEORET PROBAB, V2, P101
[7]  
Broder A. Z., 1989, Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, P543, DOI 10.1145/73007.73059
[8]  
Broder Andrei Z., 1988, P 20 ANN ACM S THEOR, P551
[9]  
BRODER AZ, 1986, 18TH P ACM S THEOR C, P50
[10]  
CHANDRA AK, 1989, 21ST P ANN ACM S THE, P574