Mesoscopic mass transport effects in electrocatalytic processes

被引:119
作者
Seidel, Y. E. [1 ]
Schneider, A. [1 ]
Jusys, Z. [1 ]
Wickman, B. [2 ]
Kasemo, B. [2 ]
Behm, R. J. [1 ]
机构
[1] Univ Ulm, Inst Catalysis & Surface Chem, D-89069 Ulm, Germany
[2] Chalmers Univ Technol, Dept Appl Phys, SE-41296 Gothenburg, Sweden
关键词
D O I
10.1039/b806437g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The role of mesoscopic mass transport and re-adsorption effects in electrocatalytic reactions was investigated using the oxygen reduction reaction (ORR) as an example. The electrochemical measurements were performed on structurally well-defined nanostructured model electrodes under controlled transport conditions in a thin-layer flow cell. The electrodes consist of arrays of Pt ultra-microelectrodes (nanodisks) of defined size (diameter similar to 100 nm) separated on a planar glassy carbon (GC) substrate, which were fabricated employing hole-mask colloidal lithography (HCL). The measurements reveal a distinct variation in the ORR selectivity with Pt nanodisk density and with increasing electrolyte flow, showing a pronounced increase of the H2O2 yield, by up to 65%, when increasing the flow rate from 1 to 30 mu L s(-1). These results are compared with previous findings and discussed in terms of a reaction model proposed recently (A. Schneider et al., Phys. Chem. Chem. Phys., 2008, 10, 1931), which includes (i) direct reduction to H2O on the Pt surface and (ii) additional H2O2 formation and desorption on both Pt and carbon surfaces and subsequent partial re-adsorption and further reduction of the H2O2 molecules on the Pt surface. The potential of model studies on structurally defined catalyst surfaces and under well-defined mass transport conditions in combination with simulations for the description of electrocatalytic reactions is discussed.
引用
收藏
页码:167 / 184
页数:18
相关论文
共 105 条
[1]  
Adzic R, 1998, FRONT ELECT, P197
[2]  
ALBERY WJ, 1986, CHEM KINETICS, V29, P129
[3]   IN-SITU STRUCTURAL CHARACTERIZATION OF A PLATINUM ELECTROCATALYST BY DISPERSIVE-X-RAY ABSORPTION-SPECTROSCOPY [J].
ALLEN, PG ;
CONRADSON, SD ;
WILSON, MS ;
GOTTESFELD, S ;
RAISTRICK, ID ;
VALERIO, J ;
LOVATO, M .
ELECTROCHIMICA ACTA, 1994, 39 (16) :2415-2418
[4]   The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study [J].
Alonso-Vante, N ;
Malakhov, IV ;
Nikitenko, SG ;
Savinova, ER ;
Kochubey, DI .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3807-3814
[5]   The catalytic centre of transition metal chalcogenides vis-a-vis the oxygen reduction reaction: An in situ electrochemical EXAFS study [J].
AlonsoVante, N ;
FieberErdmann, M ;
Rossner, H ;
HolubKrappe, E ;
Giorgetti, C ;
Tadjeddine, A ;
Dartyge, E ;
Fontaine, A ;
Frahm, R .
JOURNAL DE PHYSIQUE IV, 1997, 7 (C2) :887-889
[6]  
ANGERSTE.H, 1973, J ELECTROANAL CHEM, V43, P9, DOI 10.1016/0368-1874(73)80226-6
[7]  
AOKI K, 1977, J ELECTROANAL CHEM, V79, P49, DOI 10.1016/S0022-0728(77)80401-4
[8]   GENERALIZED SCHEME OF CHEMISORPTION, ELECTROOXIDATION AND ELECTROREDUCTION OF SIMPLE ORGANIC-COMPOUNDS ON PLATINUM GROUP METALS [J].
BAGOTZKY, VS ;
VASSILIEV, YB ;
KHAZOVA, OA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1977, 81 (02) :229-238
[9]   Differential electrochemical mass spectrometry [J].
Baltruschat, H .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2004, 15 (12) :1693-1706
[10]  
BARD AJ, 1980, ELECTROCHEMICAL METH