Paradigmatic flow for small-scale magnetohydrodynamics: Properties of the ideal case and the collision of current sheets

被引:17
作者
Lee, E. [1 ,2 ]
Brachet, M. E. [1 ,3 ]
Pouquet, A. [1 ]
Mininni, P. D. [1 ,4 ]
Rosenberg, D. [1 ]
机构
[1] Natl Ctr Atmospher Res, Geophys Turbulence Program, Boulder, CO 80307 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[3] Ecole Normale Super, F-75231 Paris, France
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.78.066401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal nondissipative case is studied up to the equivalent of 20483 grid points for one of these flows. The temporal evolution of the logarithmic decrements delta of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of delta, the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind.
引用
收藏
页数:7
相关论文
共 42 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]   Magnetohydrodynamics measurements in the von Karman sodium experiment [J].
Bourgoin, M ;
Marié, L ;
Pétrélis, F ;
Gasquet, C ;
Guigon, A ;
Luciani, JB ;
Moulin, M ;
Namer, F ;
Burguete, J ;
Chiffaudel, A ;
Daviaud, F ;
Fauve, S ;
Odier, P ;
Pinton, JF .
PHYSICS OF FLUIDS, 2002, 14 (09) :3046-3058
[3]  
BRACHET M, 1990, CR ACAD SCI II, V311, P775
[4]   SMALL-SCALE STRUCTURE OF THE TAYLOR-GREEN VORTEX [J].
BRACHET, ME ;
MEIRON, DI ;
ORSZAG, SA ;
NICKEL, BG ;
MORF, RH ;
FRISCH, U .
JOURNAL OF FLUID MECHANICS, 1983, 130 (MAY) :411-452
[5]   DIRECT SIMULATION OF 3-DIMENSIONAL TURBULENCE IN THE TAYLOR-GREEN VORTEX [J].
BRACHET, ME .
FLUID DYNAMICS RESEARCH, 1991, 8 (1-4) :1-8
[6]   3D Euler about a 2D symmetry plane [J].
Bustamante, Miguel D. ;
Kerr, Robert M. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) :1912-1920
[7]   Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD [J].
Caflisch, RE ;
Klapper, I ;
Steele, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :443-455
[8]   Effective dissipation and turbulence in spectrally truncated euler flows -: art. no. 264502 [J].
Cichowlas, C ;
Bonaïti, P ;
Debbasch, F ;
Brachet, M .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[9]   Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows [J].
Cichowlas, C ;
Brachet, ME .
FLUID DYNAMICS RESEARCH, 2005, 36 (4-6) :239-248
[10]   Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation [J].
Clyne, John ;
Mininni, Pablo ;
Norton, Alan ;
Rast, Mark .
NEW JOURNAL OF PHYSICS, 2007, 9