The life cycle of chondrocytes in the developing skeleton

被引:101
作者
Shum, L [1 ]
Nuckolls, G [1 ]
机构
[1] NIAMSD, Cartilage Biol & Orthopaed Branch, NIH, Bethesda, MD 20892 USA
关键词
cartilage; chondrogenesis; endochondral ossification; limb bud; neural crest cells;
D O I
10.1186/ar396
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cartilage serves multiple functions in the developing embryo and in postnatal life. Genetic mutations affecting cartilage development are relatively common and lead to skeletal malformations, dysfunction or increased susceptibility to disease or injury. Characterization of these mutations and investigation of the molecular pathways in which these genes function have contributed to an understanding of the mechanisms regulating skeletal patterning, chondrogenesis, endochondral ossification and joint formation. Extracellular growth and differentiation factors including bone morphogenetic proteins, fibroblast growth factors, parathyroid hormone-related peptide, extracellular matrix components, and members of the hedgehog and Wnt families provide important signals for the regulation of cell proliferation, differentiation and apoptosis. Transduction of these signals within the developing mesenchymal cells and chondrocytes results in changes in gene expression mediated by transcription factors including Smads, Msx2, Sox9, signal transducer and activator of transcription (STAT), and core-binding factor alpha 1. Further investigation of the interactions of these signaling pathways will contribute to an understanding of cartilage growth and development, and will allow for the development of strategies for the early detection, prevention and treatment of diseases and disorders affecting the skeleton.
引用
收藏
页码:94 / 106
页数:13
相关论文
共 121 条
[1]   Fibroblast growth factor inhibits chondrocytic growth through induction of p21 and subsequent inactivation of cyclin E-Cdk2 [J].
Aikawa, T ;
Segre, GV ;
Lee, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29347-29352
[2]   TGF-β-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation [J].
Alliston, T ;
Choy, L ;
Ducy, P ;
Karsenty, G ;
Derynck, R .
EMBO JOURNAL, 2001, 20 (09) :2254-2272
[3]  
Baur ST, 2000, DEVELOPMENT, V127, P605
[4]   Roles for Msx and Dlx homeoproteins in vertebrate development [J].
Bendall, AJ ;
Abate-Shen, C .
GENE, 2000, 247 (1-2) :17-31
[5]   Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization [J].
Bi, WM ;
Huang, WD ;
Whitworth, DJ ;
Deng, JM ;
Zhang, ZP ;
Behringer, RR ;
de Crombrugghe, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (12) :6698-6703
[6]   Sox9 is required for cartilage formation [J].
Bi, WM ;
Deng, JM ;
Zhang, ZP ;
Behringer, RR ;
de Crombrugghe, B .
NATURE GENETICS, 1999, 22 (01) :85-89
[7]   Reduction in transforming growth factor β receptor I expression and transcription factor CBFa1 on bone cells by glucocorticoid [J].
Chang, DJ ;
Ji, C ;
Kim, KK ;
Casinghino, S ;
McCarthy, TL ;
Centrella, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (09) :4892-4896
[8]   BMP receptors in limb and tooth formation [J].
Cheifetz, S .
CRITICAL REVIEWS IN ORAL BIOLOGY & MEDICINE, 1999, 10 (02) :182-198
[9]   Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis [J].
Chen, L ;
Adar, R ;
Yang, X ;
Monsonego, EO ;
Li, CL ;
Hauschka, PV ;
Yayon, A ;
Deng, CX .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (11) :1517-1525
[10]   A Ser365→Cys mutation of fibroblast growth factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia [J].
Chen, L ;
Li, CL ;
Qiao, WH ;
Xu, XL ;
Deng, CX .
HUMAN MOLECULAR GENETICS, 2001, 10 (05) :457-465