Mean-variance portfolio selection with random parameters in a complete market

被引:178
作者
Lim, AEB [1 ]
Zhou, XY
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
关键词
dynamic mean-variance portfolio selection; stochastic linear-quadratic optimal control; backward stochastic differential equation; stochastic Riccati equation; efficient frontier;
D O I
10.1287/moor.27.1.101.337
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns the continuous-time, mean-variance portfolio selection problem in a complete market with random interest rate, appreciation rates, and volatility coefficients. The problem is tackled using the results of stochastic linear-quadratic (LQ) optimal control and backward stochastic differential equations (BSDEs), two theories that have been extensively studied and developed in recent years. Specifically, the mean-variance problem is formulated as a linearly constrained stochastic LQ control problem. Solvability of this LQ problem is reduced, in turn, to proving global solvability of a stochastic Riccati equation. The proof of existence and uniqueness of this Riccati equation, which is a fully nonlinear and singular BSDE with random coefficients, is interesting in its own right and relies heavily on the structural properties of the equation. Efficient investment strategies as well as the mean-variance efficient frontier are then analytically derived in terms of the solution of this equation. In particular, it is demonstrated that the efficient frontier in the mean-standard deviation diagram is still a straight line or, equivalently, risk-free investment is still possible, even when the interest rate is random. Finally, a version of the Mutual Fund Theorem is presented.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 32 条
[1]  
[Anonymous], REV EC STUDIES, DOI DOI 10.2307/2296205
[2]   LINEAR QUADRATIC OPTIMAL STOCHASTIC CONTROL WITH RANDOM COEFFICIENTS [J].
BISMUT, JM .
SIAM JOURNAL ON CONTROL, 1976, 14 (03) :419-444
[3]   Stochastic linear quadratic optimal control problems with random coefficients [J].
Chen, SP ;
Yong, JM .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2000, 21 (03) :323-338
[4]   Stochastic linear quadratic regulators with indefinite control weight costs [J].
Chen, SP ;
Li, XJ ;
Zhou, XY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) :1685-1702
[5]   OPTIMAL CONSUMPTION AND PORTFOLIO POLICIES WHEN ASSET PRICES FOLLOW A DIFFUSION PROCESS [J].
COX, JC ;
HUANG, CF .
JOURNAL OF ECONOMIC THEORY, 1989, 49 (01) :33-83
[6]   A VARIATIONAL PROBLEM ARISING IN FINANCIAL ECONOMICS [J].
COX, JC ;
HUANG, CF .
JOURNAL OF MATHEMATICAL ECONOMICS, 1991, 20 (05) :465-487
[7]  
Cvitani J., 1992, ANN APPL PROBAB, V2, P767, DOI 10.1214/aoap/1177005576
[8]   OPTIMAL HEDGING AND EQUILIBRIUM IN A DYNAMIC FUTURES MARKET [J].
DUFFIE, D ;
JACKSON, MO .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1990, 14 (01) :21-33
[9]  
Duffie D., 1991, Ann. Appl. Probab., V1, P1, DOI DOI 10.1214/AOAP/1177005978
[10]   Backward stochastic differential equations in finance [J].
El Karoui, N ;
Peng, S ;
Quenez, MC .
MATHEMATICAL FINANCE, 1997, 7 (01) :1-71