The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton

被引:215
作者
Griffin, WL [1 ]
Ryan, CG
Kaminsky, FV
O'Reilly, SY
Natapov, LM
Win, TT
Kinny, PD
Ilupin, IP
机构
[1] Macquarie Univ, Dept Earth & Planetary Sci, GEMOC Natl Key Ctr, Sydney, NSW 2109, Australia
[2] CSIRO, N Ryde, NSW 2113, Australia
[3] KM Diamond Explorat, W Vancouver, BC B7T 1J1, Canada
[4] Curtin Univ Technol, Dept Appl Phys, Perth, WA 6001, Australia
[5] TsNIGRI, Moscow, Russia
关键词
lithosphere; kimberlites; Siberia; Archean; craton; mantle;
D O I
10.1016/S0040-1951(99)00156-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE-SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m(2) conductive model of Pollack and Chapman [Tectonophysics 38, 279-296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher but still 'cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150-180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50-60 km, related to Devonian rifting and Triassic magmatism, A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean-Proterozoic suture (the Billyakh Sheer Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 42 条
[1]  
Agashev A.M., 1998, 7 INT KIMB C CAP TOW, P9
[2]   LOW-CALCIUM GARNET HARZBURGITES FROM SOUTHERN AFRICA - THEIR RELATIONS TO CRATON STRUCTURE AND DIAMOND CRYSTALLIZATION [J].
BOYD, FR ;
PEARSON, DG ;
NIXON, PH ;
MERTZMAN, SA .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1993, 113 (03) :352-366
[3]   Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths [J].
Boyd, FR ;
Pokhilenko, NP ;
Pearson, DG ;
Mertzman, SA ;
Sobolev, NV ;
Finger, LW .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1997, 128 (2-3) :228-246
[4]  
BOYD FR, 1984, GEOLOGY, V12, P528, DOI 10.1130/0091-7613(1984)12<528:SGBOIX>2.0.CO
[5]  
2
[6]  
Brakhfogel' F. F., 1984, Geological Aspects of Kimberlite Magmatism in the Northeastern Siberian Platform
[7]  
DAVIS GL, 1980, DOKL AKAD NAUK SSSR+, V254, P175
[8]  
Duchkov A. D., 1997, RUSSIAN GEOLOGY GEOP, V38, P528
[9]  
FINNERTY AA, 1987, MANTLE XENOLITHS, P381
[10]   Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia [J].
Griffin, WL ;
Kaminsky, FV ;
Ryan, CG ;
OReilly, SY ;
Win, TT ;
Ilupin, IP .
TECTONOPHYSICS, 1996, 262 (1-4) :19-33