Activation of myosin phosphatase targeting subunit by mitosis-specific phosphorylation

被引:57
作者
Totsukawa, G
Yamakita, Y
Yamashiro, S
Hosoya, H
Hartshorne, DJ
Matsumura, F
机构
[1] Rutgers State Univ, Dept Mol Biol & Biochem, Nelson Labs, Piscataway, NJ 08855 USA
[2] Hiroshima Univ, Fac Sci, Dept Biol Sci, Hiroshima 7398526, Japan
[3] Univ Arizona, Muscle Biol Grp, Tucson, AZ 85721 USA
关键词
myosin; phosphorylation; phosphatase; mitosis; myosin binding;
D O I
10.1083/jcb.144.4.735
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
It has been demonstrated previously that during mitosis the sites of myosin phosphorylation are switched between the inhibitory sites, Ser 1/2, and the activation sites, Ser 19/Thr 18 (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129-137; Satterwhite, L.L., M.J. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), suggesting a regulatory role of myosin phosphorylation in cell division. To explore the function of myosin phosphatase in cell division, the possibility that myosin phosphatase activity may be altered during cell division was examined. We have found that the myosin phosphatase targeting subunit (MYPT) undergoes mitosis-specific phosphorylation and that the phosphorylation is reversed during cytokinesis. MYPT phosphorylated either in vivo or in vitro in the mitosis-specific way showed higher binding to myosin II (two- to threefold) compared to MYPT from cells in interphase. Furthermore, the activity of myosin phosphatase was increased more than twice and it is suggested this reflected the increased affinity of myosin binding. These results indicate the presence of a unique positive regulatory mechanism for myosin phosphatase in cell division. The activation of myosin phosphatase during mitosis would enhance dephosphorylation of the myosin regulatory light chain, thereby leading to the disassembly of stress fibers during prophase. The mitosis-specific effect of phosphorylation is lost on exit from mitosis, and the resultant increase in myosin phosphorylation may act as a signal to activate cytokinesis.
引用
收藏
页码:735 / 744
页数:10
相关论文
共 55 条
[1]   THE CONTROL OF PROTEIN PHOSPHATASE-1 BY TARGETING SUBUNITS - THE MAJOR MYOSIN PHOSPHATASE IN AVIAN SMOOTH-MUSCLE IS A NOVEL FORM OF PROTEIN PHOSPHATASE-1 [J].
ALESSI, D ;
MACDOUGALL, LK ;
SOLA, MM ;
IKEBE, M ;
COHEN, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 210 (03) :1023-1035
[2]   Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J].
Amano, M ;
Ito, M ;
Kimura, K ;
Fukata, Y ;
Chihara, K ;
Nakano, T ;
Matsuura, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20246-20249
[3]  
BENGUR AR, 1987, J BIOL CHEM, V262, P7613
[4]   QUANTITATIVE ELECTROPHORESIS IN POLYACRYLAMIDE GELS OF 2-40 PERCENT [J].
BLATTLER, DP ;
BRADLEY, A ;
VANSLYKE, K ;
GARNER, F .
JOURNAL OF CHROMATOGRAPHY, 1972, 64 (01) :147-&
[5]  
BOYLE WJ, 1991, METHOD ENZYMOL, V201, P110
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   MOLECULAR-CLONING OF CDNA-ENCODING THE 110-KDA AND 21-KDA REGULATORY SUBUNITS OF SMOOTH-MUSCLE PROTEIN PHOSPHATASE-1M [J].
CHEN, YH ;
CHEN, MX ;
ALESSI, DR ;
CAMPBELL, DG ;
SHANAHAN, C ;
COHEN, P ;
COHEN, PTW .
FEBS LETTERS, 1994, 356 (01) :51-55
[8]   Rho-stimulated contractility drives the formation of stress fibers and focal adhesions [J].
ChrzanowskaWodnicka, M ;
Burridge, K .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1403-1415
[9]   Myosin II transport, organization, and phosphorylation: Evidence for cortical flow solation-contraction coupling during cytokinesis and cell locomotion [J].
DeBiasio, RL ;
LaRocca, GM ;
Post, PL ;
Taylor, DL .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (08) :1259-1282
[10]   PHOSPHORYLATION AND INACTIVATION OF PROTEIN PHOSPHATASE-1 BY CYCLIN-DEPENDENT KINASES [J].
DOHADWALA, M ;
SILVA, EFDE ;
HALL, FL ;
WILLIAMS, RT ;
CARBONAROHALL, DA ;
NAIRN, AC ;
GREENGARD, P ;
BERNDT, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (14) :6408-6412