Mechanism of electromechanical coupling in voltage-gated potassium channels

被引:71
作者
Blunck, Rikard [1 ,2 ,3 ]
Batulan, Zarah [1 ,2 ]
机构
[1] Grp Etud Prot Membranaires, Montreal, PQ, Canada
[2] Univ Montreal, Dept Physiol, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
来源
FRONTIERS IN PHARMACOLOGY | 2012年 / 3卷
关键词
voltage-gated potassium channels; electromechanical coupling; gating; HCN; HERG; BKCa; SHAKER K+ CHANNELS; DEPENDENT CONFORMATIONAL-CHANGES; GATING CHARGE MOVEMENT; AMINO-TERMINAL DOMAIN; MOLECULAR DETERMINANTS; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; ACTIVATION GATE; S4; SEGMENT; SODIUM-CHANNEL;
D O I
10.3389/fphar.2012.00166
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3-4e(+) each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4-S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during gating.
引用
收藏
页数:16
相关论文
共 191 条
[1]   Episodic ataxia results from voltage-dependent potassium channels with altered functions [J].
Adelman, JP ;
Bond, CT ;
Pessia, M ;
Maylie, J .
NEURON, 1995, 15 (06) :1449-1454
[2]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[3]   Focused electric field across the voltage sensor of potassium channels [J].
Ahern, CA ;
Horn, R .
NEURON, 2005, 48 (01) :25-29
[4]   Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization [J].
Akhavan, A ;
Atanasiu, R ;
Noguchi, T ;
Han, W ;
Holder, N ;
Shrier, A .
JOURNAL OF CELL SCIENCE, 2005, 118 (13) :2803-2812
[5]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[7]   A fluorometric approach to local electric field measurements in a voltage-gated ion channel [J].
Asamoah, OK ;
Wuskell, JP ;
Loew, LM ;
Bezanilla, F .
NEURON, 2003, 37 (01) :85-97
[8]   Mechanisms of closed-state inactivation in voltage-gated ion channels [J].
Baehring, Robert ;
Covarrubias, Manuel .
JOURNAL OF PHYSIOLOGY-LONDON, 2011, 589 (03) :461-479
[9]   Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels [J].
Bähring, R ;
Boland, LM ;
Varghese, A ;
Gebauer, M ;
Pongs, O .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 535 (01) :65-81
[10]  
Bahring R., 2009, J GEN PHYSIOL, V133, P205