An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position

被引:234
作者
Xi, Maolong [1 ,2 ]
Sun, Jun [1 ]
Xu, Wenbo [1 ]
机构
[1] Jiangnan Univ, Sch Informat Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] WuXi Inst Technol, Wuxi 214122, Jiangsu, Peoples R China
关键词
PSO; QPSO; Mean best position; Weight parameter; WQPSO;
D O I
10.1016/j.amc.2008.05.135
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quantum-behaved particle swarm optimization (QPSO) algorithm is a global convergence guaranteed algorithms, which outperforms original PSO in search ability but has fewer parameters to control. In this paper, we propose an improved quantum-behaved particle swarm optimization with weighted mean best position according to fitness values of the particles. It is shown that the improved QPSO has faster local convergence speed, resulting in better balance between the global and local searching of the algorithm, and thus generating good performance. The proposed improved QPSO, called weighted QPSO (WQPSO) algorithm, is tested on several benchmark functions and compared with QPSO and standard PSO. The experiment results show the superiority of WQPSO. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:751 / 759
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 2001, THESIS U PRETORIA
[2]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[3]  
Clerc M., 2004, DISCRETE PARTICLE SW
[4]  
Fogel L. J., 1994, COMPUTATIONAL INTELL
[5]  
Goldberg D.E, 1989, GENETIC ALGORITHMS S
[6]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[7]  
Koza JR, 1992, GENETIC PROGRAMMING
[8]  
Rechenberg I., 1994, Computational Intelligence Imitating Life
[9]  
Shi Y., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1945, DOI 10.1109/CEC.1999.785511
[10]   A modified particle swarm optimizer [J].
Shi, YH ;
Eberhart, R .
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, :69-73