VEGF as a therapeutic target in cancer

被引:460
作者
Ferrara, N [1 ]
机构
[1] Genentech Inc, Dept Mol Oncol, San Francisco, CA 94080 USA
关键词
VEGF; angiogenesis; anti-angiogenic therapy; anti-VEGF therapy; bevacizumab;
D O I
10.1159/000088479
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumors require nutrients and oxygen in order to grow, and new blood vessels, formed by the process of angiogenesis, provide these substrates. The key mediator of angiogenesis is vascular endothelial growth factor (VEGF), which is induced by many characteristics of tumors, most importantly hypoxia. Therefore, VEGF is an appealing target for anticancer therapeutics. In addition, VEGF is easy to access as it circulates in the blood and acts directly on endothelial cells. VEGF-mediated angiogenesis is rare in adult humans (except wound healing and female reproductive cycling), and so targeting the molecule should not affect other physiological processes. Tumor blood vessels, formed under the influence of VEGF, are disorganized, tortuous and leaky with high interstitial pressure, reducing access for chemotherapies. Inhibiting VEGF would reduce the vessel abnormality and increase the permeability of the tumor to chemotherapies. Several approaches to targeting VEGF have been investigated. The most common strategies have been receptor-targeted molecules and VEGF-targeting molecules. The disadvantage of receptor-targeted approaches is that the VEGF receptors also bind different members of the VEGF super-family and affect systems other than angiogenesis. The best-studied and most advanced approach to VEGF inhibition is the humanized monoclonal antibody bevacizumab (Avastin(R)), which is the only anti-angiogenic agent approved for treatment of cancer. Copyright (C) 2005 S. Karger AG, Basel.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 39 条
[1]   VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells [J].
Asahara, T ;
Takahashi, T ;
Masuda, H ;
Kalka, C ;
Chen, DH ;
Iwaguro, H ;
Inai, Y ;
Silver, M ;
Isner, JM .
EMBO JOURNAL, 1999, 18 (14) :3964-3972
[2]  
Bachelder RE, 2001, CANCER RES, V61, P5736
[3]  
Borgstrom P, 1996, CANCER RES, V56, P4032
[4]   VEGF as a key mediator of angiogenesis in cancer [J].
Carmeliet, P .
ONCOLOGY, 2005, 69 :4-10
[5]   PITUITARY FOLLICULAR CELLS SECRETE A NOVEL HEPARIN-BINDING GROWTH-FACTOR SPECIFIC FOR VASCULAR ENDOTHELIAL-CELLS [J].
FERRARA, N ;
HENZEL, WJ .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1989, 161 (02) :851-858
[6]   Role of vascular endothelial growth factor in Physiologic and Pathologic angiogenesis: Therapeutic implications [J].
Ferrara, N .
SEMINARS IN ONCOLOGY, 2002, 29 (06) :10-14
[7]   The biology of VEGF and its receptors [J].
Ferrara, N ;
Gerber, HP ;
LeCouter, J .
NATURE MEDICINE, 2003, 9 (06) :669-676
[8]   Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo [J].
Gabrilovich, D ;
Ishida, T ;
Oyama, T ;
Ran, S ;
Kravtsov, V ;
Nadaf, S ;
Carbone, DP .
BLOOD, 1998, 92 (11) :4150-4166
[9]   BOTH V-HA-RAS AND V-RAF STIMULATE EXPRESSION OF THE VASCULAR ENDOTHELIAL GROWTH-FACTOR IN NIH 3T3 CELLS [J].
GRUGEL, S ;
FINKENZELLER, G ;
WEINDEL, K ;
BARLEON, B ;
MARME, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (43) :25915-25919
[10]   Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF [J].
Holash, J ;
Maisonpierre, PC ;
Compton, D ;
Boland, P ;
Alexander, CR ;
Zagzag, D ;
Yancopoulos, GD ;
Wiegand, SJ .
SCIENCE, 1999, 284 (5422) :1994-1998