Bayesian optimal one point designs for one parameter nonlinear models

被引:20
作者
Dette, H
Neugebauer, HM
机构
[1] RUHR UNIV BOCHUM,INST MATH,D-44780 BOCHUM,GERMANY
[2] DEBIS AVIAT LEASING GMBH,D-70567 STUTTGART,GERMANY
关键词
Bayesian design; optimal design; nonlinear models; maximum likelihood estimation; mixture distribution; logistic regression;
D O I
10.1016/0378-3758(95)00104-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For nonlinear one parameter models and concave optimality criteria there always exists a locally optimal one point design. This can be proved by an application of Caratheodory's theorem (Lauter, Math. Operationsforsch. Statist. Ser. Statist. 5 (1974a) 625-636). If prior distributions with densities are used, this theorem gives no useful bound on the number of support points of a Bayesian optimal design. Chaloner (J. Statist. Plann. Inference, 37 (1993) 229-236) gave a sufficient condition on the support of the prior distribution for the existence of a Bayesian optimal one point design. In this article, a condition on the shape of the prior density is given, which is also sufficient for the existence of a Bayesian optimal one point design in nonlinear models with one parameter.
引用
收藏
页码:17 / 31
页数:15
相关论文
共 18 条
[1]   BAYESIAN DESIGN FOR ACCELERATED LIFE TESTING [J].
CHALONER, K ;
LARNTZ, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1992, 33 (02) :245-259
[2]   OPTIMAL BAYESIAN DESIGN APPLIED TO LOGISTIC-REGRESSION EXPERIMENTS [J].
CHALONER, K ;
LARNTZ, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 21 (02) :191-208
[3]   A NOTE ON OPTIMAL BAYESIAN DESIGN FOR NONLINEAR PROBLEMS [J].
CHALONER, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 37 (02) :229-235
[4]  
CHALONER K, 1987, MODEL ORIENTED DATA, P3
[5]   LOCALLY OPTIMAL DESIGNS FOR ESTIMATING PARAMETERS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1953, 24 (04) :586-602
[6]   A GENERALIZATION OF D-OPTIMAL AND D1-OPTIMAL DESIGNS IN POLYNOMIAL REGRESSION [J].
DETTE, H .
ANNALS OF STATISTICS, 1990, 18 (04) :1784-1804
[7]  
DETTE H, 1994, BIOMETRIKA, V81, P739
[8]  
DETTE H, 1996, IN PRESS J STAT PLAN
[9]  
Dharmadhikari S, 1988, UNIMODALITY CONVEXIT
[10]  
FORD I, 1992, J ROY STAT SOC B MET, V54, P569